Computerized Cognitive Rehabilitation Therapy (CCRT) for African Children: Evidence for Neuropsychological Benefit and Future Directions

  • Paul Bangirana
  • Michael J. Boivin
  • Bruno Giordani
Chapter
Part of the Specialty Topics in Pediatric Neuropsychology book series (STPN)

Abstract

Cognitive deficits are a common outcome of central nervous system (CNS) infections in African children. Cerebral malaria and HIV infection are the commonest CNS infections associated with these deficits. The high mortality associated with these conditions has made them a public health priority in many African countries. With better treatment for these conditions now available, more children now survive into adulthood. More attention is now being paid to the quality of life of these children who live with persisting cognitive deficits. In order for these children to achieve their full potential, interventions have been called for like cognitive rehabilitation, speech and physical therapy, and caregiver training. This chapter presents a review of the cognitive rehabilitation studies carried out in sub-Saharan Africa looking at how they were designed, the outcomes and limitations. A brief overview of similar interventions for children with other CNS disorders is also given. A discussion of the implication of these studies and suggestions for future research are presented.

Notes

Acknowledgments

This work was supported by R01HD064416 (PIs Boivin, Nakasujja). We acknowledge the substantive editorial assistance of Anne B. Giordani Ph.D., ELS.

References

  1. Abubakar, A., Van De Vijver, F. J., Mithwani, S., Obiero, E., Lewa, N., Kenga, S., et al. (2007). Assessing developmental outcomes in children from Kilifi, Kenya, following prophylaxis for seizures in cerebral malaria. Journal of Health Psychology, 12(3), 417–430.PubMedCrossRefGoogle Scholar
  2. Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., et al. (2002). Effects of cognitive training interventions with older adults. JAMA: The Journal of the American Medical Association, 288(18), 2271–2281.CrossRefGoogle Scholar
  3. Bangirana, P., Allebeck, P., Boivin, M. J., John, C. C., Page, C., Ehnvall, A., et al. (2011). Cognition, behaviour and academic skills after cognitive rehabilitation in Ugandan children surviving severe malaria: A randomised trial. BMC Neurology, 11(1), 96.PubMedCrossRefGoogle Scholar
  4. Bangirana, P., Giordani, B., John, C. C., Page, C., Opoka, R. O., & Boivin, M. J. (2009a). Immediate neuropsychological and behavioral benefits of computerized cognitive rehabilitation in Ugandan pediatric cerebral malaria survivors. Journal of Developmental and Behavioral Pediatrics, 30(4), 310–318.PubMedCrossRefGoogle Scholar
  5. Bangirana, P., Idro, R., John, C. C., & Boivin, M. J. (2006). Rehabilitation for cognitive impairments after cerebral malaria in African children: Strategies and limitations. Tropical Medicine & International Health, 11(9), 1341–1349.CrossRefGoogle Scholar
  6. Bangirana, P., John, C. C., Idro, R., Opoka, R. O., Byarugaba, J., Jurek, A. M., et al. (2009b). Socioeconomic predictors of cognition in Ugandan children: Implications for community interventions. PLoS One, 4(11), e7898.PubMedCrossRefGoogle Scholar
  7. Bangirana, P., Nakasujja, N., Giordani, B., Opoka, R. O., John, C. C., & Boivin, M. J. (2009c). Reliability of the Luganda version of the Child Behaviour Checklist in measuring behavioural problems after cerebral malaria. Child Adolescent Psychiatry Mental Health, 3, 38.CrossRefGoogle Scholar
  8. Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65–94.PubMedCrossRefGoogle Scholar
  9. Bellucci, D. M., Glaberman, K., & Haslam, N. (2003). Computer-assisted cognitive rehabilitation reduces negative symptoms in the severely mentally ill. Schizophrenia Research, 59(2–3), 225–232.PubMedCrossRefGoogle Scholar
  10. Bergquist, T., Gehl, C., Mandrekar, J., Lepore, S., Hanna, S., Osten, A., et al. (2009). The effect of internet-based cognitive rehabilitation in persons with memory impairments after severe traumatic brain injury. Brain Injury, 23(10), 790–799.PubMedCrossRefGoogle Scholar
  11. Bergquist, T. F., Thompson, K., Gehl, C., & Munoz Pineda, J. (2010). Satisfaction ratings after receiving internet-based cognitive rehabilitation in persons with memory impairments after severe acquired brain injury. Telemedicine Journal and e-Health, 16(4), 417–423.PubMedCrossRefGoogle Scholar
  12. Bisiacchi, P. S., Suppiej, A., & Laverda, A. (2000). Neuropsychological evaluation of neurologically asymptomatic HIV-infected children. Brain and Cognition, 43(1–3), 49–52.PubMedGoogle Scholar
  13. Boivin, M. J., Bangirana, P., Byarugaba, J., Opoka, R. O., Idro, R., Jurek, A. M., et al. (2007). Cognitive impairment after cerebral malaria in children: A prospective study. Pediatrics, 119(2), e360–e366.PubMedCrossRefGoogle Scholar
  14. Boivin, M. J., Busman, R. A., Parikh, S. M., Bangirana, P., Page, C. F., Opoka, R. O., et al. (2010a). A pilot study of the neuropsychological benefits of computerized cognitive rehabilitation in Ugandan children with HIV. Neuropsychology, 24(5), 667–673.PubMedCrossRefGoogle Scholar
  15. Boivin, M. J., Green, S. D., Davies, A. G., Giordani, B., Mokili, J. K., & Cutting, W. A. (1995). A preliminary evaluation of the cognitive and motor effects of pediatric HIV infection in Zairian children. Health Psychology, 14(1), 13–21.PubMedCrossRefGoogle Scholar
  16. Boivin, M. J., Ruel, T. D., Boal, H. E., Bangirana, P., Cao, H., Eller, L. A., et al. (2010b). HIV-­subtype A is associated with poorer neuropsychological performance compared with subtype D in antiretroviral therapy-naive Ugandan children. AIDS, 24(8), 1163–1170. doi: 1110.1097/QAD.1160b1013e3283389dcc PubMedCrossRefGoogle Scholar
  17. Brown, J., Cooper-Kuhn, C. M., Kempermann, G., Van Praag, H., Winkler, J., Gage, F. H., et al. (2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. The European Journal of Neuroscience, 17(10), 2042–2046.PubMedCrossRefGoogle Scholar
  18. Cardier, J. E., Rivas, B., Romano, E., Rothman, A. L., Perez-Perez, C., Ochoa, M., et al. (2006). Evidence of vascular damage in dengue disease: Demonstration of high levels of soluble cell adhesion molecules and circulating endothelial cells. Endothelium, 13(5), 335–340.PubMedCrossRefGoogle Scholar
  19. Carter, J. A., Ross, A. J., Neville, B. G., Obiero, E., Katana, K., Mung’ala-Odera, V., et al. (2005). Developmental impairments following severe falciparum malaria in children. Tropical Medicine & International Health, 10(1), 3–10.CrossRefGoogle Scholar
  20. Castellanos, F. X., & Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nature Reviews Neuroscience, 3(8), 617–628.PubMedGoogle Scholar
  21. de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291(5509), 1803–1806.PubMedCrossRefGoogle Scholar
  22. Drotar, D., Olness, K., Wiznitzer, M., Schatschneider, C., Marum, L., Guay, L., et al. (1999). Neurodevelopmental outcomes of Ugandan infants with HIV infection: An application of growth curve analysis. Health Psychology, 18(2), 114–121.PubMedCrossRefGoogle Scholar
  23. Engle, P. L., Black, M. M., Behrman, J. R., Cabral de Mello, M., Gertler, P. J., Kapiriri, L., et al. (2007). Strategies to avoid the loss of developmental potential in more than 200 million children in the developing world. Lancet, 369(9557), 229–242.PubMedCrossRefGoogle Scholar
  24. Engle, R. W., Kane, J. M., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In A. Myake & P. Shah (Eds.), Models of working memory (pp. 102–134). Cambridge: Cambridge University Press.Google Scholar
  25. Fernando, S. D., Rodrigo, C., & Rajapakse, S. (2010). The ‘hidden’ burden of malaria: Cognitive impairment following infection. Malaria Journal, 9(1), 366.PubMedCrossRefGoogle Scholar
  26. Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. The American Journal of Psychiatry, 160(4), 636–645.PubMedCrossRefGoogle Scholar
  27. Grantham-McGregor, S., Cheung, Y. B., Cueto, S., Glewwe, P., Richter, L., & Strupp, B. (2007). Developmental potential in the first 5 years for children in developing countries. Lancet, 369(9555), 60–70.PubMedCrossRefGoogle Scholar
  28. Hardy, K. K., Willard, V. W., & Bonner, M. J. (2011). Computerized cognitive training in survivors of childhood cancer: A pilot study. Journal of Pediatric Oncology Nursing, 28(1), 27–33.PubMedCrossRefGoogle Scholar
  29. Hedman, E., Andersson, E., Ljotsson, B., Andersson, G., Ruck, C., & Lindefors, N. (2011). Cost-­effectiveness of Internet-based cognitive behavior therapy vs. cognitive behavioral group therapy for social anxiety disorder: Results from a randomized controlled trial. Behaviour Research and Therapy, 49(11), 729–736.PubMedCrossRefGoogle Scholar
  30. Heimann, M., Nelson, K. E., Tjus, T., & Gillberg, C. (1995). Increasing reading and communication skills in children with autism through an interactive multimedia computer program. Journal of Autism and Developmental Disorders, 25(5), 459–480.PubMedCrossRefGoogle Scholar
  31. Hoekzema, E., Carmona, S., Tremols, V., Gispert, J. D., Guitart, M., Fauquet, J., et al. (2010). Enhanced neural activity in frontal and cerebellar circuits after cognitive training in children with attention-deficit/hyperactivity disorder. Human Brain Mapping, 31(12), 1942–1950.PubMedCrossRefGoogle Scholar
  32. Hooft, I. V., Andersson, K., Bergman, B., Sejersen, T., Von Wendt, L., & Bartfai, A. (2005). Beneficial effect from a cognitive training programme on children with acquired brain injuries demonstrated in a controlled study. Brain Injury, 19(7), 511–518.PubMedCrossRefGoogle Scholar
  33. Idro, R., Jenkins, N. E., & Newton, C. R. (2005). Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurology, 4(12), 827–840.PubMedCrossRefGoogle Scholar
  34. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108(25), 10081–10086.CrossRefGoogle Scholar
  35. Jeremy, R. J., Kim, S., Nozyce, M., Nachman, S., McIntosh, K., Pelton, S. I., et al. (2005). Neuropsychological functioning and viral load in stable antiretroviral therapy-experienced HIV-infected children. Pediatrics, 115(2), 380–387.PubMedCrossRefGoogle Scholar
  36. John, C. C., Bangirana, P., Byarugaba, J., Opoka, R. O., Idro, R., Jurek, A. M., et al. (2008a). Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics, 122(1), e92–e99.PubMedCrossRefGoogle Scholar
  37. John, C. C., Panoskaltsis-Mortari, A., Opoka, R. O., Park, G. S., Orchard, P. J., Jurek, A. M., et al. (2008b). Cerebrospinal fluid cytokine levels and cognitive impairment in cerebral malaria. The American Journal of Tropical Medicine and Hygiene, 78(2), 198–205.PubMedGoogle Scholar
  38. Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386(6624), 493–495.PubMedCrossRefGoogle Scholar
  39. Kihara, M., Carter, J. A., & Newton, C. R. (2006). The effect of Plasmodium falciparum on cognition: A systematic review. Tropical Medicine & International Health, 11(4), 386–397.CrossRefGoogle Scholar
  40. Klein, P. S., & Rye, H. (2004). Interaction-oriented early intervention in Ethiopia: The MISC approach. Infants and Young Children, 17, 340–354.CrossRefGoogle Scholar
  41. Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlstrom, K., et al. (2005). Computerized training of working memory in children with ADHD–a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177–186.PubMedCrossRefGoogle Scholar
  42. Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 781–791.PubMedCrossRefGoogle Scholar
  43. Koekkoek, S., de Sonneville, L. M. J., Wolfs, R. F. W., Licht, R., & Greelen, S. P. M. (2008). Neurocognitive function profile in HIV-infected school-age children. European Journal of Paediatric Neurology, 12, 290–297.PubMedCrossRefGoogle Scholar
  44. Koekkoek, S., Eggermont, L., De Sonneville, L., Jupimai, T., Wicharuk, S., Apateerapong, W., et al. (2006). Effects of highly active antiretroviral therapy (HAART) on psychomotor performance in children with HIV disease. Journal of Neurology, 253(12), 1615–1624.PubMedCrossRefGoogle Scholar
  45. Kolb, B., & Whishaw, I. Q. (2009). Fundamentals of human neuropsychology (6th ed.). New York: Worth Publishers.Google Scholar
  46. Ljotsson, B., Hedman, E., Andersson, E., Hesser, H., Lindfors, P., Hursti, T., et al. (2011). Internet-­delivered exposure-based treatment vs. stress management for irritable bowel syndrome: A randomized trial. The American Journal of Gastroenterology, 106(8), 1481–1491.PubMedCrossRefGoogle Scholar
  47. Lucas, C., Abikoff, H., Petkova, E., Gan, W., Sved, S., Bruett, L., et al. (2008). A randomized controlled trial of two forms of computerized working memory training in ADHD. In American Psychiatric Association (APA) 161st Annual Meeting, Washington, DC.Google Scholar
  48. Lundy-Ekman, L. (1998). Neuroscience: Fundamentals for rehabilitation. Philadelphia, PA: Saunders.Google Scholar
  49. Mahncke, H. W., Bronstone, A., & Merzenich, M. M. (2006a). Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. In A. R. Moller (Ed.), Progress in brain research (Vol. 157, pp. 81–109). Amsterdam: Elsevier B.V.Google Scholar
  50. Mahncke, H. W., Connor, B. B., Appelman, J., Ahsanuddin, O. N., Hardy, J. L., Wood, R. A., et al. (2006b). Memory enhancement in healthy older adults using a brain plasticity-based training program: A randomized, controlled study. Proceedings of the National Academy of Sciences, 103(33), 12523–12528.CrossRefGoogle Scholar
  51. McNab, F., Varrone, A., Farde, L., Jucaite, A., Bystritsky, P., Forssberg, H., et al. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science, 323(5915), 800–802.PubMedCrossRefGoogle Scholar
  52. Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79.PubMedCrossRefGoogle Scholar
  53. Olness, K. (2003). Effects on brain development leading to cognitive impairment: A worldwide epidemic. Journal of Developmental and Behavioral Pediatrics, 24(2), 120–130.PubMedCrossRefGoogle Scholar
  54. Park, G. S., Min, M., Opika-Opoka, R., Boivin, M. J., & John, C. C. (2008). von Willebrand factor, but not sVCAM-1 or sICAM-1, effectively discriminates between cerebral and uncomplicated malaria in Ugandan children. Paper presented at the keystone conference on infectious disease, Vienna, Austria.Google Scholar
  55. Pulsifer, M., & Aylward, E. (1999). Human immunodeficiency virus. In K. O. Yeates & M. D. Ris (Eds.), Pediatric neuropsychology, research, theory, and practice: The science and practice of neuropsychology (pp. 381–402). New York: Guilford Press.Google Scholar
  56. Rabiner, D. L., Murray, D. W., Skinner, A. T., & Malone, P. S. (2010). A randomized trial of two promising computer-based interventions for students with attention difficulties. Journal of Abnormal Child Psychology, 38, 131–142.PubMedCrossRefGoogle Scholar
  57. Rohling, M. L., Faust, M. E., Beverly, B., & Demakis, G. (2009). Effectiveness of cognitive rehabilitation following acquired brain injury: A meta-analytic re-examination of Cicerone et al.’s (2000, 2005) systematic reviews. Neuropsychology, 23(1), 20–39.PubMedCrossRefGoogle Scholar
  58. Ruel, T. D., Boivin, M. J., Boal, H. E., Bangirana, P., Charlebois, E., Havlir, D. V., et al. (2012). Neurocognitive and motor deficits in HIV-infected Ugandan children with high CD4 cell counts. Clinical Infectious Diseases, 54(7), 1001–1009.PubMedCrossRefGoogle Scholar
  59. Sanchez-Ramon, S., Resino, S., Bellon Cano, J. M., Ramos, J. T., Gurbindo, D., & Munoz-­Fernandez, A. (2003). Neuroprotective effects of early antiretrovirals in vertical HIV infection. Pediatric Neurology, 29(3), 218–221.PubMedCrossRefGoogle Scholar
  60. Sandford, J. A. (2007). Captain’s log computerized cognitive training system. Richmond, VA: Brain Train.Google Scholar
  61. Shalev, L., Tsal, Y., & Mevorach, C. (2007). Computerized progressive attentional training (CPAT) program: Effective direct intervention for children with ADHD. Child Neuropsychology, 13(4), 382–388.PubMedCrossRefGoogle Scholar
  62. Shanbhag, M. C., Rutstein, R. M., Zaoutis, T., Zhao, H., Chao, D., & Radcliffe, J. (2005). Neurocognitive functioning in pediatric human immunodeficiency virus infection: Effects of combined therapy. Archives of Pediatrics & Adolescent Medicine, 159(7), 651–656.CrossRefGoogle Scholar
  63. Smith, G. E., Housen, P., Yaffe, K., Ruff, R., Kennison, R. F., Mahncke, H. W., et al. (2009). A cognitive training program based on principles of brain plasticity: Results from the improvement in memory with plasticity-based adaptive cognitive training (IMPACT) study. Journal of the American Geriatrics Society, 57(4), 594–603.PubMedCrossRefGoogle Scholar
  64. Snow, R. W., Guerra, C. A., Noor, A. M., Myint, H. Y., & Hay, S. I. (2005). The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, 434(7030), 214–217.PubMedCrossRefGoogle Scholar
  65. Spina, L., Kim, S., Pansarasa, C., Borrow, J., Stasio, C., & Mahncke, H. (2008). Computer-based cognitive rehabilitation in HIV associated neurocognitive impairment: A case study. Paper presented at the 36th annual International Neuropsychological Society Meeting, Waikoloa, Hawaii.Google Scholar
  66. Sternberg, R. J., & Grigorenko, E. L. (2002). Dynamic testing: The nature and measurement of learning potential. New York: Cambridge University Press.Google Scholar
  67. Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro, N., et al. (2010). Training of working memory impacts structural connectivity. The Journal of Neuroscience, 30(9), 3297–3303.PubMedCrossRefGoogle Scholar
  68. UNAIDS. (2010). Global report: UNAIDS report on the global AIDS epidemic 2010. Geneva: UNAIDS.Google Scholar
  69. van Mourik, J. A., Boertjes, R., Huisveld, I. A., Fijnvandraat, K., Pajkrt, D., van Genderen, P. J. J., et al. (1999). von Willebrand factor propeptide in vascular disorders: A tool to distinguish between acute and chronic endothelial cell perturbation. Blood, 94(1), 179–185.PubMedGoogle Scholar
  70. Van Rie, A., Mupuala, A., & Dow, A. (2008). Impact of the HIV/AIDS epidemic on the neurodevelopment of preschool-aged children in Kinshasa, Democratic Republic of the Congo. Pediatrics, 122(1), e123.PubMedCrossRefGoogle Scholar
  71. Von Giesen, H. J., Niehues, T., Reumel, J., Haslinger, B. A., Ndagijimana, J., & Arendt, G. (2003). Delayed motor learning and psychomotor slowing in HIV-infected children. Neuropediatrics, 34(4), 177–181.CrossRefGoogle Scholar
  72. Walker, S. P., Wachs, T. D., Gardner, J. M., Lozoff, B., Wasserman, G. A., Pollitt, E., et al. (2007). Child development: Risk factors for adverse outcomes in developing countries. Lancet, 369(9556), 145–157.PubMedCrossRefGoogle Scholar
  73. Westerberg, H., Hirvikoski, T., Forssberg, H., & Klingberg, T. (2004). Visuo-spatial working memory span: A sensitive measure of cognitive deficits in children with ADHD. Child Neuropsychology, 10(3), 155–161.PubMedGoogle Scholar
  74. Westerman, R., Darby, D. G., Maruff, P., & Collie, A. (2001). Computer-assisted cognitive function assessment of pilots. ADF Health, 2, 29–36.Google Scholar
  75. WHO. (2010). The world health report: Health systems financing: The path to universal coverage. Geneva: World Health Organisation.Google Scholar
  76. World Bank. (2006). Where is the wealth of nations? Measuring capital for the 21st century. Washington, DC: The World Bank.Google Scholar
  77. World Bank. (2011). World development report: Conflict, security, and development. Washington, DC: The World Bank.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Paul Bangirana
    • 1
  • Michael J. Boivin
    • 2
    • 3
  • Bruno Giordani
    • 4
  1. 1.Department of PsychiatryMakerere UniversityKampalaUganda
  2. 2.Departments of Psychiatry and Neurology/OphthalmologyMichigan State UniversityEast LansingUSA
  3. 3.Department of PsychiatryNeuropsychology SectionAnn ArborUSA
  4. 4.Neuropsychology Section, Departments of Psychiatry, Neurology, and PsychologyUniversity of MichiganAnn ArborUSA

Personalised recommendations