Advertisement

On the Routability of the Internet

  • Pau Erola
  • Sergio Gómez
  • Alex Arenas
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

The third chapter delves into the detail of presenting methodologies based on complex network theory to construct navigable maps of the scale-free Internet. This chapter is motivated by the studies which have concluded that in the presence of topology dynamics, a better scaling on Internet-like topologies is fundamentally impossible: while routing tables can be greatly reduced, the amount of messages per topology change cannot grow slower than linearly.

Keywords

Short Path Hyperbolic Space Modular Structure Border Gateway Protocol Route Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been partially supported by the Spanish DGICYT Project FIS2009-13730-C02-02 and the Generalitat de Catalunya 2009-SGR-838. PE acknowledges a URV PhD grant.

References

  1. [1].
  2. [2].
  3. [3].
    I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, M. Thorup, Compact name-independent routing with minimum stretch, in Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures (ACM, 2004), pp. 20–24Google Scholar
  4. [4].
    L. Adamic, R. Lukose, A. Puniyani, B. Huberman, Search in power-law networks. Phys. Rev. E 64(4), 046,135 (2001)Google Scholar
  5. [5].
    A. Arenas, J. Borge-Holthoefer, S. Gómez, G. Zamora-Lopez, Optimal map of the modular structure of complex networks. New J. Phys. 12, 053,009 (2010)Google Scholar
  6. [6].
    B. Awerbuch, A. Bar-Noy, N. Linial, D. Peleg, Compact distributed data structures for adaptive routing, in Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing (ACM, 1989), pp. 479–489Google Scholar
  7. [7].
    M. Boguñá, D. Krioukov, KC. Claffy, Navigability of complex networks. Nat. Phys. 5(1), 74–80 (2008)Google Scholar
  8. [8].
    M. Boguñá, F. Papadopoulos, D. Krioukov, Sustaining the internet with hyperbolic mapping. Nat. Comm. 1, 62 (2010)CrossRefGoogle Scholar
  9. [9].
    A. Brady, L. Cowen, Compact routing on power law graphs with additive stretch, in Proc. of the 9th Workshop on Algorithm Eng. and Exper, pp. 119–128, 2006Google Scholar
  10. [10].
    U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, D. Wagner, On finding graph clusterings with maximum modularity, in Graph-Theoretic Concepts in Computer Science (Springer, 2007), pp. 121–132Google Scholar
  11. [11].
    T. Bu, L. Gao, D. Towsley, On characterizing bgp routing table growth. Comput. Netw. 45(1), 45–54 (2004)CrossRefGoogle Scholar
  12. [12].
    I. Castineyra, N. Chiappa, M. Steenstrup, The nimrod routing architecture (1996)Google Scholar
  13. [13].
    L. Danon, A. Díaz-Guilera, J. Duch, A. Arenas, Comparing community structure identification. J. Stat. Mech.-Theory Exp. 2005.09, P09008. (2005)Google Scholar
  14. [14].
    J. Duch, A. Arenas, Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027,104 (2005)Google Scholar
  15. [15].
    P. Erola, J. Borge-Holthoefer, S. Gómez and A. Arenas, Reliability of optimal linear projection of growing scale-free networks, Int. J. Bifurcat. Chaos, 22(7), (2012)Google Scholar
  16. [16].
    P. Erola, S. Gómez, A. Arenas, An internet local routing approach based on network structural connectivity, in Proceedings of IEEE GLOBECOM Workshop on Complex Networks and Pervasive Group Communication, pp. 7–11 (IEEE, Houston, Texas, USA, 2011)Google Scholar
  17. [17].
    P. Erola, S. Gómez, A. Arenas, Structural navigability on complex networks. Int. J. Complex Syst. Sci. 1, 37–41 (2011)Google Scholar
  18. [18].
    M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of the internet topology, in ACM SIGCOMM Computer Communication Review, vol. 29–4 (ACM, 1999), pp. 251–262Google Scholar
  19. [19].
    D. Farinacci, Locator/id separation protocol (lisp). Internet-draft, draft-farinacci-lisp-08 (2008)Google Scholar
  20. [20].
    V. Fuller, T. Li, Classless inter-domain routing (cidr): the internet address assignment and aggregation plan (2006)Google Scholar
  21. [21].
    M. Girvan, M. Newman, Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22].
    R. Hinden, New scheme for internet routing and addressing (encaps) for ipng (1996)Google Scholar
  23. [23].
    J. Kleinberg, Navigation in a small world. Nature 406(6798), 845–845 (2000)CrossRefGoogle Scholar
  24. [24].
    L. Kleinrock, F. Kamoun, Hierarchical routing for large networks performance evaluation and optimization. Comput. Network (1976) 1(3), 155–155 (1977)Google Scholar
  25. [25].
    D. Krioukov, K. Fall, A. Brady, et al., On compact routing for the internet. ACM SIGCOMM Comput. Comm. Rev. 37(3), 41–52 (2007)CrossRefGoogle Scholar
  26. [26].
    D. Krioukov, K. Fall, X. Yang, Compact routing on internet-like graphs, in INFOCOM 2004. Twenty-Third AnnualJoint Conference of the IEEE Computer and Communications Societies, vol. 1 (IEEE, 2004)Google Scholar
  27. [27].
    D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá, Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036,106 (2010)Google Scholar
  28. [28].
    C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, F. Jahanian, Internet inter-domain traffic, in ACM SIGCOMM Computer Communication Review, vol. 40–4 (ACM, 2010), pp. 75–86Google Scholar
  29. [29].
    S. Lattanzi, A. Panconesi, D. Sivakumar, Milgram-routing in social networks, in Proceedings of the 20th International Conference on World Wide Web (ACM, 2011), pp. 725–734Google Scholar
  30. [30].
    D. Meyer, L. Zhang, K. Fall, et al., Report from the iab workshop on routing and addressing. RFC2439, September (2007)Google Scholar
  31. [31].
    M. Newman, Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066,133 (2004)Google Scholar
  32. [32].
    F. Papadopoulos, D. Krioukov, M. Boguñá, A. Vahdat, Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces. arXiv:0805.1266v3 (2010)Google Scholar
  33. [33].
    R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  34. [34].
    D. Peleg, E. Upfal, A trade-off between space and efficiency for routing tables. J. ACM 36(3), 510–530 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35].
    E. Rosen, Exterior gateway protocol (egp) (1982). URL http://tools.ietf.org/html/rfc827
  36. [36].
    S. Russell, P. Norvig, Artificial Intelligence: a Modern Approach. Artificial Intelligence (Prentice-Hall, Englewood Cliffs, 1995)zbMATHGoogle Scholar
  37. [37].
    N. Santoro, R. Khatib, Labelling and implicit routing in networks. Comput. J. 28(1), 5–8 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  38. [38].
    C. Shue, M. Gupta, Packet forwarding: Name-based vs. prefix-based, in IEEE Global Internet Symposium, 2007 (IEEE, 2007), pp. 73–78Google Scholar
  39. [39].
    J. Stewart III, BGP4: Inter-Domain Routing in the Internet (Addison-Wesley Longman, 1998)Google Scholar
  40. [40].
    M. Thorup, U. Zwick, Compact routing schemes, in Proceedings of the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures (ACM, 2001), pp. 1–10Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departament d’Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations