Advertisement

An Empirical Validation of Growth Models for Complex Networks

  • Alan Mislove
  • Hema Swetha Koppula
  • Krishna P. Gummadi
  • Peter Druschel
  • Bobby Bhattacharjee
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This chapter is focused towards the empirical validation of generation of powerlaw networks. Empirical growth data from four different networks (the Flickr and the YouTube online social networks, Wikipedia’s content graph, and the Internet’s AS-level graph) are used to show this growth. This study makes two contributions: First, the gathering of detailed measurements of the growth of four large-scale networks and make the data available to the research community. Second, the thorough investigation of the link creation processes in datasets. The inadequacy of preferential attachment (i.e., “the rich get richer”), a popular growth model, to explain growth has been revealed in this chapter.

References

  1. [1].
  2. [2].
    L.A. Adamic, O. Buyukkokten, E. Adar, A social network caught in the Web. First Monday 8(6) (2003)Google Scholar
  3. [3].
    R. Albert, H. Jeong, A.-L. Bárabási, The diameter of the World Wide Web. Nature 401, 130 (1999)CrossRefGoogle Scholar
  4. [4].
    L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan, Group formation in large social networks: membership, growth, evolution, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06), Philadelphia, PA, 2006Google Scholar
  5. [5].
    A.-L. Bárabási, R. Albert, Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  6. [6].
    V. Braitenberg, A. Schz, Anatomy of a Cortex: Statistics and Geometry (Springer, Berlin, 1991)Google Scholar
  7. [7].
    A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, Graph structure in the web: experiments and models, in Proceedings of the 9th International World Wide Web Conference (WWW’00), Amsterdam, 2000Google Scholar
  8. [8].
    A. Capocci, V.D.P. Servedio, F. Colaiori, L.S. Buriol, D. Donato, S. Leonardi, G. Caldarelli, Preferential attachment in the growth of social networks: the internet encyclopedia Wikipedia. Phys. Rev. E, American Physical Society, College Park, MD 74, 036116-1–0361166 (2006)Google Scholar
  9. [9].
    H. Chang, S. Jamin, W. Willinger, To peer or not to peer: modeling the evolution of the internet’s AS-level topology, in Proceedings of the 25th Conference on Computer Communications (INFOCOM’06), Barcelona, Spain, 2006Google Scholar
  10. [10].
    N. Eiron, K.S. McCurley, Link structure of hierarchical information networks, in Proceedings of the Third Workshop on Algorithms and Models for the Web-Graph (WAW’04), Rome, Italy, 2004Google Scholar
  11. [11].
    M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of the Internet topology, in Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication (SIGCOMM’99), Cambridge, MA, 1999Google Scholar
  12. [12].
    D. Garlaschelli, M. Loffredo, Patterns of link reciprocity in directed networks. Phys. Rev. Lett., American Physical Society, College Park, MD 93, 268701-1–268701-4 (2004)Google Scholar
  13. [13].
    P. Holme, B.J. Kim, Growing scale-free networks with tunable clustering. Phys. Rev. E, American Physical Society, College Park, MD 65, 026107-1–026107-4 (2002)Google Scholar
  14. [14].
    E.M. Jin, M. Grivan, M. Newman, The structure of growing social networks. Phys. Rev. E, American Physical Society, College Park, MD 64, 046132-1–046132-8 (2001)Google Scholar
  15. [15].
    J. Kleinberg, Authoritative sources in a hyperlinked environment, in Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA’98), San Francisco, CA, 1998Google Scholar
  16. [16].
    K. Klemm, V.M. Eguiluz, Highly clustered scale-free networks. Phys. Rev. E, American Physical Society, College Park, MD 65, 036123-1–036123-5 (2002)Google Scholar
  17. [17].
    G. Kossinets, D.J. Watts, Empirical analysis of an evolving social network. Science 311, 88–90 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18].
    R. Kumar, J. Novak, P. Raghavan, A. Tomkins, On the bursty evolution of blogspace, in Proceedings of the 12th International Conference on World Wide Web (WWW’03), Budapest, Hungary, 2003Google Scholar
  19. [19].
    R. Kumar, J. Novak, A. Tomkins, Structure and evolution of online social networks, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06), Philadelphia, PA, 2006Google Scholar
  20. [20].
    R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, Trawling the web for emerging cyber-communities. Comput. Network 31, 1481–1493 (1999)CrossRefGoogle Scholar
  21. [21].
    J. Leskovec, J. Kleinberg, C. Faloutsos, Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data, Association for Computing Machinery, New York, NY 1, 1–41 (2007)Google Scholar
  22. [22].
    D. Liben-Nowell, J. Kleinberg, The link prediction problem for social networks, in Proceedings of the 2003 ACM International Conference on Information and Knowledge Management (CIKM’03), New Orleans, LA, 2003Google Scholar
  23. [23].
    A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, B. Bhattacharjee, Measurement and analysis of online social networks, in Proceedings of the 5th ACM/USENIX Internet Measurement Conference (IMC’07), San Diego, CA, 2007Google Scholar
  24. [24].
    M. Mitzenmacher, A brief history of generative models for power law and lognormal distributions. Internet Math. 1(2), 226–251 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25].
    M. Mitzenmacher, Editorial: the future of power law research. Internet Math. 2(4), 525–534 (2006)CrossRefGoogle Scholar
  26. [26].
    M.E.J. Newman, Clustering and preferential attachment in growing networks. Phys. Rev. E, American Physical Society, College Park, MD 64, 025102-1–025102-4 (2001)Google Scholar
  27. [27].
    M.E.J. Newman, The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28].
    L. Page, S. Brin, R. Motwani, T. Winograd, The pagerank citation ranking: bringing order to the web. Technical Report, Stanford University, 1998Google Scholar
  29. [29].
    M. Peltomäki, M. Alava, Correlations in bipartite collaboration networks. J. Stat. Mech., IOP Publishing, Bristol, UK P01010, 1–23 (2006)Google Scholar
  30. [30].
    A.G. Phadke, J.S. Thorp, Computer Relaying for Power Systems (Wiley, New York, NY, 1988)Google Scholar
  31. [31].
    J. Saramaki, K. Kaski, Scale-free networks generated by random walkers. Phys. A 341, 80 (2004)MathSciNetCrossRefGoogle Scholar
  32. [32].
    A. Vásquez, Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E, American Physical Society, College Park, MD 67, 056104-1–056104-15 (2003)Google Scholar
  33. [33].
    V. Zlatić, M. Božičević, H. Štefančić, M. Domazet, Wikipedias: collaborative web-based encyclopedias as complex networks. Phys. Rev. E, American Physical Society, College Park, MD 74, 016115-1–016115-9 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alan Mislove
    • 1
  • Hema Swetha Koppula
    • 2
  • Krishna P. Gummadi
    • 3
  • Peter Druschel
    • 3
  • Bobby Bhattacharjee
    • 4
  1. 1.Northeastern UniversityBostonUSA
  2. 2.Cornell UniversityIthacaUSA
  3. 3.Max Planck Institute for Software SystemsKaiserslautern–SaarbrueckenGermany
  4. 4.University of MarylandCollege ParkUSA

Personalised recommendations