The Stability of a Graph Partition: A Dynamics-Based Framework for Community Detection

  • Jean-Charles Delvenne
  • Michael T. Schaub
  • Sophia N. Yaliraki
  • Mauricio Barahona
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Recent years have seen a surge of interest in the analysis of complex systems. This trend has been facilitated by the availability of relational data and the increasingly powerful computational resources that can be employed for their analysis. A unifying concept in the study of complex systems is their formalisation as networks comprising a large number of non-trivially interacting agents. By considering a network perspective, it is hoped to gain a deepened understanding of system-level properties beyond what could be achieved by focussing solely on the constituent units. Naturally, the study of real-world systems leads to highly complex networks and a current challenge is to extract intelligible, simplified descriptions from the network in terms of relevant subgraphs (or communities), which can provide insight into the structure and function of the overall system.

References

  1. [1].
    M.E.J. Newman, M. Girvan, Phys. Rev. E 69(2), 026113 (2004)CrossRefGoogle Scholar
  2. [2].
    M.E.J. Newman, Proc. Natl. Acad. Sci. 103(23), 8577 (2006). DOI 10.1073/pnas. 0601602103CrossRefGoogle Scholar
  3. [3].
    H.A. Simon, Proc. Am. Phil. Soc. 106(6), 467 (1962)Google Scholar
  4. [4].
    S. Fortunato, Phys. Rep. 486(3–5), 75 (2010). DOI 10.1016/j.physrep.2009.11.002MathSciNetCrossRefGoogle Scholar
  5. [5].
    J.C. Delvenne, S.N. Yaliraki, M. Barahona, Proc. Natl. Acad. Sci. 107(29), 12755 (2010). DOI 10.1073/pnas.0903215107CrossRefGoogle Scholar
  6. [6].
    R. Lambiotte, J.C. Delvenne, M. Barahona, Laplacian Dynamics and Multiscale Modular Structure in Networks (2009). ArXiv:0812.1770Google Scholar
  7. [7].
    R. Lambiotte, Multi-scale modularity and dynamics in complex networks, in Dynamics on and of Complex Networks, vol. 2: Applications to Time-Varying Dynamical Systems, ed. by A. Mukherjee, M. Choudhury, F. Peruani, N. Ganguly, B. Mitra (Springer, New York, 2013)Google Scholar
  8. [8].
    F. Chung, Spectral Graph Theory. No. 92 in Regional Conference Series in Mathematics (American Mathematical Society, 1997)Google Scholar
  9. [9].
    R. Lambiotte, R. Sinatra, J.C. Delvenne, T.S. Evans, M. Barahona, V. Latora, Phys. Rev. E 84(1), 017102 (2011)CrossRefGoogle Scholar
  10. [10].
    E. Le Martelot, C. Hankin, Multi-scale Community Detection using Stability Optimisation, The International Journal of Web Based Communities (IJWBC) Special Issue on Community Structure in Complex Networks, 9, to appear. (2013)Google Scholar
  11. [11].
    R. Lambiotte, in Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks (WiOpt 2010), University of Avignon, Avignon, 31 May–4 June 2010 (IEEE, 2010), pp. 546–553Google Scholar
  12. [12].
    A. Delmotte, E.W. Tate, S.N. Yaliraki, M. Barahona, Phys. Biol. 8(5), 055010 (2011)CrossRefGoogle Scholar
  13. [13].
    E. Simpson, Nature 163(4148), 688 (1949)MATHCrossRefGoogle Scholar
  14. [14].
    A. Hirschman, Am. Econ. Rev. 54(5), 761 (1964)Google Scholar
  15. [15].
    A. Renyi, in Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp. 547–561, 1961Google Scholar
  16. [16].
    C. Tsallis, J. Stat. Phys. 52(1), 479 (1988)MathSciNetMATHCrossRefGoogle Scholar
  17. [17].
    J. Shi, J. Malik, IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888 (2000). DOI 10.1109/34.868688CrossRefGoogle Scholar
  18. [18].
    M. Fiedler, Czech. Math. J. 23(2), 298 (1973)MathSciNetGoogle Scholar
  19. [19].
    M. Fiedler, Czech. Math. J. 25(4), 619 (1975)MathSciNetGoogle Scholar
  20. [20].
    J. Reichardt, S. Bornholdt, Phys. Rev. Lett. 93(21), 218701 (2004). DOI 10.1103/ PhysRevLett.93.218701CrossRefGoogle Scholar
  21. [21].
    J. Reichardt, S. Bornholdt, Phys. Rev. E 74(1), 016110 (2006). DOI 10.1103/ PhysRevE.74.016110MathSciNetCrossRefGoogle Scholar
  22. [22].
    V.A. Traag, P. Van Dooren, Y. Nesterov, Phys. Rev. E 84(1), 016114 (2011)CrossRefGoogle Scholar
  23. [23].
    P. Ronhovde, Z. Nussinov, Phys. Rev. E 80, 016109 (2009). DOI 10.1103/PhysRevE. 80.016109CrossRefGoogle Scholar
  24. [24].
    P. Ronhovde, Z. Nussinov, Phys. Rev. E 81(4), 046114 (2010). DOI 10.1103/ PhysRevE.81.046114CrossRefGoogle Scholar
  25. [25].
    R. Kannan, S. Vempala, A. Veta, in Proceedings. 41st Annual Symposium on Foundations of Computer Science, 2000, pp. 367–377, 2000Google Scholar
  26. [26].
    U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, D. Wagner, IEEE Trans. Knowl. Data Eng. 20(2), 172 (2008)CrossRefGoogle Scholar
  27. [27].
    M.E.J. Newman, Phys. Rev. E 74(3), 036104 (2006). DOI 10.1103/PhysRevE.74. 036104MathSciNetCrossRefGoogle Scholar
  28. [28].
    V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech. Theor Exp. 2008(10), P10008 (2008)CrossRefGoogle Scholar
  29. [29].
    B. Kernighan, S. Lin, Bell Syst. Tech. J. 49(2), 291 (1970)MATHGoogle Scholar
  30. [30].
    M.T. Schaub, J.C. Delvenne, S.N. Yaliraki, M. Barahona, PLoS ONE 7(2), e32210 (2012). DOI 10.1371/journal.pone.0032210CrossRefGoogle Scholar
  31. [31].
    M. Meila, J. Multivariate Anal. 98(5), 873 (2007). DOI 10.1016/j.jmva.2006.11.013MathSciNetMATHCrossRefGoogle Scholar
  32. [32].
    D. Meunier, R. Lambiotte, E.T. Bullmore, Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4:200. doi: 10.3389/fnins.2010.00200 (2010)Google Scholar
  33. [33].
    M.E.J. Newman, Phys. Rev. E 74(3) (2006)Google Scholar
  34. [34].
    M. Rosvall, C.T. Bergstrom, Proc. Natl. Acad. Sci. 105(4), 1118 (2008). DOI 10.1073/pnas.0706851105CrossRefGoogle Scholar
  35. [35].
    M.T. Schaub, R. Lambiotte, M. Barahona, Encoding dynamics for multiscale community detection: Markov time sweeping for the map equation. Phys. Rev. E. 86, pp. 026112. American Physical Society. DOI 10.1103/PhysRevE.86.026112 (2012)Google Scholar
  36. [36].
    A. Lancichinetti, S. Fortunato, F. Radicchi, Phys. Rev. E 78(4), 046110 (2008). DOI 10.1103/PhysRevE.78.046110CrossRefGoogle Scholar
  37. [37].
    A. Lancichinetti, S. Fortunato, Phys. Rev. E 80(1), 016118 (2009). DOI 10.1103/ PhysRevE.80.016118CrossRefGoogle Scholar
  38. [38].
    L. Danon, A. Díaz-Guilera, A. Arenas, J. Stat. Mech. Theor Exp. 2006(11), P11010 (2006)CrossRefGoogle Scholar
  39. [39].
    B. Karrer, M.E.J. Newman, Phys. Rev. E 83(1), 016107 (2011). DOI 10.1103/ PhysRevE.83.016107MathSciNetCrossRefGoogle Scholar
  40. [40].
    M. Rosas-Casals, S. Valverde, R.V. Solé, Int. J. Bifurcat. Chaos 17(7), 2465 (2007)MATHCrossRefGoogle Scholar
  41. [41].
    R.V. Solé, M. Rosas-Casals, B. Corominas-Murtra, S. Valverde, Phys. Rev. E 77(2), 026102 (2008). DOI 10.1103/PhysRevE.77.026102CrossRefGoogle Scholar
  42. [42].
    Y. Hyun, B. Huffaker, D. Andersen, E. Aben, M. Luckie, K. Claffy, C. Shannon, The IPv4 Routed /24 AS Links Dataset - Data from 3.1.2012. URL http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml
  43. [43].
    T.S. Evans, R. Lambiotte, Phys. Rev. E 80(1), 016105 (2009)CrossRefGoogle Scholar
  44. [44].
    P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.P. Onnela, Science 328(5980), 876 (2010)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jean-Charles Delvenne
    • 1
    • 2
  • Michael T. Schaub
    • 3
    • 4
  • Sophia N. Yaliraki
    • 3
  • Mauricio Barahona
    • 4
  1. 1.Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM) and Center for Operations Research and Optimisation (CORE)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Namur Center for Complex Systems (naXys)Facultés Universitaires Notre-Dame de la PaixNamurBelgium
  3. 3.Department of ChemistryImperial College LondonLondonUK
  4. 4.Department of MathematicsImperial College LondonLondonUK

Personalised recommendations