Additive Combinatorics: With a View Towards Computer Science and Cryptography—An Exposition

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 43)

Abstract

Recently, additive combinatorics has blossomed into a vibrant area in mathematical sciences. But it seems to be a difficult area to define—perhaps because of a blend of ideas and techniques from several seemingly unrelated contexts which are used there. One might say that additive combinatorics is a branch of mathematics concerning the study of combinatorial properties of algebraic objects, for instance, Abelian groups, rings, or fields. This emerging field has seen tremendous advances over the last few years and has recently become a focus of attention among both mathematicians and computer scientists. This fascinating area has been enriched by its formidable links to combinatorics, number theory, harmonic analysis, ergodic theory, and some other branches; all deeply cross-fertilize each other, holding great promise for all of them! In this exposition, we attempt to provide an overview of some breakthroughs in this field, together with a number of seminal applications to sundry parts of mathematics and some other disciplines, with emphasis on computer science and cryptography.

References

  1. 1.
    D. Achlioptas, Random matrices in data analysis. In Proc. of ECML ’04 (2004), pp. 1–8Google Scholar
  2. 2.
    D. Achlioptas, A. Naor, Y. Peres, Rigorous location of phase transitions in hard optimization problems. Nature 435, 759–764 (2005)CrossRefGoogle Scholar
  3. 3.
    O. Ahmadi, I.E. Shparlinski, Bilinear character sums and the sum-product problem on elliptic curves. Proc. Edinburgh Math. Soc. 53, 1–12 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    N. Alon, A. Shapira, Homomorphisms in graph property testing - A survey. In Topics in Discrete Mathematics, Algorithms and Combinatorics, vol. 26 (Springer, Berlin, 2006) pp. 281–313Google Scholar
  5. 5.
    N. Alon, A. Shapira, A characterization of the (natural) graph properties testable with one-sided error. SIAM J. Comput. 37(6), 1703–1727 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    N. Alon, A. Shapira, Every monotone graph property is testable. SIAM J. Comput. 38(2), 505–522 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    N. Alon, E. Fischer, I. Newman, A. Shapira, A combinatorial characterization of the testable graph properties: It’s all about regularity. SIAM J. Comput. 39(1), 143–167 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    N. Alon, J. Balogh, R. Morris, W. Samotij, A refinement of the Cameron-Erdős conjecture (2012), arXiv/1202.5200Google Scholar
  9. 9.
    N. Alon, J. Balogh, R. Morris, W. Samotij, Counting sum-free sets in Abelian groups (2012), arXiv/1201.6654Google Scholar
  10. 10.
    N. Alon, O. Angel, I. Benjamini, E. Lubetzky, Sums and products along sparse graphs. Israel J. Math. 188, 353–384 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    T. Austin, Deducing the multidimensional Szemerédi theorem from an infinitary removal lemma. J. Anal. Math. 111, 131–150 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    T. Austin, Deducing the density Hales-Jewett theorem from an infinitary removal lemma. J. Theoret. Probab. 24(3), 615–633 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    T. Austin, T. Tao, Testability and repair of hereditary hypergraph properties. Random Structures 36(4), 373–463 (2010)MathSciNetMATHGoogle Scholar
  14. 14.
    P. Austrin, E. Mossel, Noise correlation bounds for uniform low degree functions. Ark. Mat. (to appear)Google Scholar
  15. 15.
    P. Balister, B. Bollobás, Projections, entropy and sumsets. Combinatorica 32(2), 125–141 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    A. Balog, Another sum-product estimate in finite fields. Sovrem. Probl. Mat. 16, 31–37 (2012)Google Scholar
  17. 17.
    A. Balog, K.A. Broughan, I.E. Shparlinski, On the number of solutions of exponential congruences. Acta Arith. 148(1), 93–103 (2011)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    A. Balog, K.A. Broughan, I.E. Shparlinski, Sum-products estimates with several sets and applications. Integers 12(5), 895–906 (2012)Google Scholar
  19. 19.
    B. Barak, R. Impagliazzo, A. Wigderson, Extracting randomness using few independent sources. SIAM J. Comput. 36(4), 1095–1118 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    B. Barak, A. Rao, R. Shaltiel, A. Wigderson, 2-source dispersers for sub-polynomial entropy and Ramsey graphs beating the Frankl-Wilson construction. In Proc. 38th Annu. ACM Symp. Theory Comput (STOC ’06) (2006), pp. 671–680Google Scholar
  21. 21.
    B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, A. Wigderson, Simulating independence: new constructions of condensers, Ramsey graphs, dispersers, and extractors. J. ACM 57(4), Art. 20, 52 (2010)Google Scholar
  22. 22.
    M. Bateman, N.H. Katz, Structure in additively nonsmoothing sets (2011), arXiv/1104.2862Google Scholar
  23. 23.
    M. Bateman, N.H. Katz, New bounds on cap sets. J. Amer. Math. Soc. 25, 585–613 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    F.A. Behrend, On the sets of integers which contain no three in arithmetic progression. Proc. Nat. Acad. Sci. 23, 331–332 (1946)MathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Bellare, S. Tessaro, A. Vardy, A cryptographic treatment of the wiretap channel (2012), arXiv/1201.2205Google Scholar
  26. 26.
    E. Ben-Sasson, S. Kopparty, Affine dispersers from subspace polynomials. In Proc. 41st Annu. ACM Symp. Theory Comput (STOC ’09) (2009), pp. 65–74.Google Scholar
  27. 27.
    E. Ben-Sasson, N. Zewi, From affine to two-source extractors via approximate duality. In Proc. 43rd Annu. ACM Symp. Theory Comput. (STOC ’11) (2011), pp. 177–186Google Scholar
  28. 28.
    E. Ben-Sasson, S. Lovett, N. Zewi, An additive combinatorics approach to the log-rank conjecture in communication complexity (2011), arXiv/1111.5884Google Scholar
  29. 29.
    V. Bergelson, A. Leibman, E. Lesigne, Intersective polynomials and the polynomial Szemerédi theorem. Adv. Math. 219, 369–388 (2008)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    A. Bhattacharyya, E. Grigorescu, A. Shapira, A unified framework for testing linear-invariant properties. In Proc. 51st Annu. IEEE Symp. Found. Comput. Sci. (FOCS ’10) (2010), pp. 478–487Google Scholar
  31. 31.
    A. Bhattacharyya, Z. Dvir, A. Shpilka, S. Saraf, Tight lower bounds for 2-query LCCs over finite fields. In Proc. 52nd Annu. IEEE Symp. Found. Comput. Sci. (FOCS ’11) (2011), pp. 638–647Google Scholar
  32. 32.
    T. Bloom, Translation invariant equations and the method of Sanders (2011), arXiv/1107.1110Google Scholar
  33. 33.
    A. Bogdanov and E. Viola, Pseudorandom bits for polynomials. In Proc. 48th Annu. IEEE Symp. Found. Comput. Sci. (FOCS ’07) (2007), pp. 41–51Google Scholar
  34. 34.
    B. Bollobás, O. Riordan, The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theor. Related Fields 136, 417–468 (2006)CrossRefMATHGoogle Scholar
  35. 35.
    J. Bourgain, On triples in arithmetic progression. Geom. Funct. Anal. 9, 968–984 (1999)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    J. Bourgain, New bounds on exponential sums related to the Diffie-Hellman distributions. C. R. Math. Acad. Sci. Paris 338(11), 825–830 (2004)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    J. Bourgain, Estimates on exponential sums related to the Diffie-Hellman distributions. Geom. Funct. Anal. 15, 1–34 (2005)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    J. Bourgain, Estimation of certain exponential sums arising in complexity theory. C. R. Math. Acad. Sci. Paris 340(9), 627–631 (2005)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    J. Bourgain, More on sum-product phenomenon in prime fields and its applications. Int. J. Number Theory 1, 1–32 (2005)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    J. Bourgain, Mordell’s exponential sum estimate revisited. J. Amer. Math. Soc. 18(2), 477–499 (2005)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    J. Bourgain, On the construction of affine extractors. Geom. Funct. Anal. 17(1) (2007), 33–57.MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    J. Bourgain, Some arithmetical applications of the sum-product theorems in finite fields. In Geometric Aspects of Functional Analysis, Lecture Notes in Math (Springer, 2007), pp. 99–116Google Scholar
  43. 43.
    J. Bourgain, Roth’s theorem on progressions revisited. J. Anal. Math. 104, 155–192 (2008)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    J. Bourgain, Expanders and dimensional expansion. C. R. Acad. Sci. Paris, Ser. I 347, 357–362 (2009)Google Scholar
  45. 45.
    J. Bourgain, Multilinear exponential sums in prime fields under optimal entropy condition on the sources. Geom. Funct. Anal. 18(5), 1477–1502 (2009)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    J. Bourgain, The sum-product phenomenon and some of its applications. In Analytic Number Theory (Cambridge University Press, Cambridge, 2009), pp. 62–74Google Scholar
  47. 47.
    J. Bourgain, Sum-product theorems and applications. In Additive Number Theory (Springer, New York, 2010), pp. 9–38Google Scholar
  48. 48.
    J. Bourgain, M.-C. Chang, Sum-product theorem and exponential sum estimates. C. R. Acad. Sci. Paris, Ser. I 339, 463–466 (2004)Google Scholar
  49. 49.
    J. Bourgain, M.-C. Chang, A Gauss sum estimate in arbitrary finite fields. C.R. Math. Acad. Sci. Paris 342(9), 643–646 (2006)Google Scholar
  50. 50.
    J. Bourgain, M.-C. Chang, Sum-product theorems in algebraic number fields. J. Anal. Math. 109, 253–277 (2009)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    J. Bourgain, A. Gamburd, New results on expanders. Comptes Rendus Acad. Sci. Paris Ser. I 342, 717–721 (2006)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    J. Bourgain, A. Gamburd, Uniform expansion bounds for Cayley graphs of \(SL_{2}(\mathbb{F}_{p})\). Ann. of Math. 167(2), 625–642 (2008)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    J. Bourgain, M. Garaev, On a variant of sum-product estimates and exponential sum bounds in prime fields. Math. Proc. Cambridge Philos. Soc. 146, 1–21 (2009)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    J. Bourgain, G. Kalai, Influences of variables and threshold intervals under group symmetries. Geom. Funct. Anal. 7, 438–461 (1997)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    J. Bourgain, P.P. Varjú, Expansion in \(SL_{d}(\mathbb{Z}/q\mathbb{Z})\), q arbitrary. Invent. Math. 188(1), 151–173 (2012)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    J. Bourgain, A. Yehudayoff, Monotone expansion. In Proc. 44th Annu. ACM Symp. Theory Comput (STOC ’12) (2012), pp. 1061–1078Google Scholar
  57. 57.
    J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields, and applications. Geom. Funct. Anal. 14, 27–57 (2004)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    J. Bourgain, A.A. Glibichuk, S.V. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order. J. London Math. Soc. 73(2), 380–398 (2006)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    J. Bourgain, A. Gamburd, P. Sarnak, Sieving and expanders. Comptes Rendus Acad. Sci. Paris Ser. I 343, 155–159 (2006)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    J. Bourgain, A. Gamburd, P. Sarnak, Affine linear sieve, expanders, and sum-product. Invent. Math. 179(3), 559–644 (2010)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    J. Bourgain, S. Dilworth, K. Ford, S. Konyagin, D. Kutzarova, Explicit constructions of RIP matrices and related problems. Duke Math. J. 159(1), 145–185 (2011)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    J. Bourgain, M.Z. Garaev, S.V. Konyagin, I.E. Shparlinski, On the hidden shifted power problem (2011), arXiv/1110.0812Google Scholar
  63. 63.
    J. Bourgain, M.Z. Garaev, S.V. Konyagin, I.E. Shparlinski, On congruences with products of variables from short intervals and applications (2012), arXiv/1203.0017Google Scholar
  64. 64.
    E. Breuillard, B. Green, Approximate groups I: The torsion-free nilpotent case. J. Inst. Math. Jussieu 10(1), 37–57 (2011)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    E. Breuillard, B. Green, Approximate groups II: The solvable linear case. Quart. J. Math. 62(3), 513–521 (2011)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    E. Breuillard, B. Green, T. Tao, Suzuki groups as expanders. Groups Geom. Dyn. 5, 281–299 (2011)MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    E. Breuillard, B. Green, T. Tao, Approximate subgroups of linear groups. Geom. Funct. Anal. 21(4), 774–819 (2011)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    E. Breuillard, B. Green, T. Tao, The structure of approximate groups (2011), arXiv/1110.5008Google Scholar
  69. 69.
    É. Brezin, V. Kazakov, D. Serban, P. Wiegmann, A. Zabrodin (eds.), in Applications of Random Matrices in Physics. (NATO Science Series II, Mathematics, physics, and chemistry), vol. 221 (Springer, Dordrecht, 2006)Google Scholar
  70. 70.
    B. Bukh, J. Tsimerman, Sum-product estimates for rational functions. Proc. Lond. Math. Soc. 104(1), 1–26 (2012)MathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    E.J. Candès, The restricted isometry property and its implications for compressed sensing. C. R. Math. Acad. Sci. Paris 346, 589–592 (2008)MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inform. Theory 51, 4203–4215 (2005)MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    E. Candès, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52, 5406–5425 (2006)MathSciNetCrossRefGoogle Scholar
  74. 74.
    E.J. Candès, J. K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59, 1207–1223 (2006)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    R. Canetti, J. Friedlander, S. Konyagin, M. Larsen, D. Lieman, I. E. Shparlinski, On the statistical properties of Diffie-Hellman distributions. Israel J. Math. part A 120, 23–46 (2000)MathSciNetMATHGoogle Scholar
  76. 76.
    M. Capalbo, O. Reingold, S. Vadhan, A. Wigderson, Randomness conductors and constant-degree lossless expanders. In Proc. 34th Annu. ACM Symp. Theory Comput (STOC ’02) (2002), pp. 659–668Google Scholar
  77. 77.
    R. Chaabouni, H. Lipmaa, A. Shelat, Additive combinatorics and discrete logarithm based range protocols. In Proc. ACISP ’10, Sydney, Australia, 5–7 July 2010. Lecture Notes in Computer Science, vol. 6168 (Springer, 2010), pp. 336–351Google Scholar
  78. 78.
    M.-C. Chang, A polynomial bound in Freiman’s theorem. Duke Math. J. 113(3), 399–419 (2002)MathSciNetCrossRefMATHGoogle Scholar
  79. 79.
    M.-C. Chang, A sum-product theorem in semi-simple commutative Banach algebras. J. Funct. Anal. 212, 399–430 (2004)MathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    M.-C. Chang, A sum-product estimate in algebraic division algebras. Israel J. Math. 150, 369–380 (2005)MathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    M.-C. Chang, On sum-product representations in \(\mathbb{Z}_{q}\). J. Eur. Math. Soc. (JEMS) 8(3), 435–463 (2006)Google Scholar
  82. 82.
    M.-C. Chang, Additive and multiplicative structure in matrix spaces. Combin. Probab. Comput. 16(2), 219–238 (2007)MathSciNetCrossRefMATHGoogle Scholar
  83. 83.
    M.-C. Chang, On a matrix product question in cryptography (2012) (preprint)Google Scholar
  84. 84.
    M.-C. Chang, J. Solymosi, Sum-product theorems and incidence geometry. J. Eur. Math. Soc. (JEMS) 9(3), 545–560 (2007)Google Scholar
  85. 85.
    M.-C. Chang, J. Cilleruelo, M.Z. Garaev, J. Hernández, I.E. Shparlinski, A. Zumalacárregui, Points on curves in small boxes and applications (2011), arXiv/1111.1543Google Scholar
  86. 86.
    J. Chapman, M. B. Erdoǧan, D. Hart, A. Iosevich, D. Koh, Pinned distance sets, k-simplices, Wolff’s exponent in finite fields and sum-product estimates. Math. Z. 271(1–2), 63–93 (2012)MATHGoogle Scholar
  87. 87.
    C. Chevalier, P.-A. Fouque, D. Pointcheval, S. Zimmer, Optimal randomness extraction from a Diffie-Hellman element. In Advances in Cryptology Proc. of Eurocrypt ’09, ed. by A. Joux. Lecture Notes in Computer Science, vol. 5479 (Springer, 2009), pp. 572–589Google Scholar
  88. 88.
    B. Chor, O. Goldreich, Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)MathSciNetCrossRefMATHGoogle Scholar
  89. 89.
    J. Cilleruelo, M.Z. Garaev, Concentration of points on two and three dimensional modular hyperbolas and applications. Geom. Func. Anal. 21, 892–904 (2011)MathSciNetCrossRefMATHGoogle Scholar
  90. 90.
    J. Cilleruelo, M.Z. Garaev, A. Ostafe, I.E. Shparlinski, On the concentration of points of polynomial maps and applications. Math. Z. 272(3–4), 825–837 (2012)Google Scholar
  91. 91.
    J. Cilleruelo, I.E. Shparlinski, A. Zumalacárregui, Isomorphism classes of elliptic curves over a finite field in some thin families. Math. Res. Lett. 19(2), 335–343 (2012)Google Scholar
  92. 92.
    D. Conlon, J. Fox, Bounds for graph regularity and removal lemmas. Geom. Funct. Anal. 22(5), 1191–1256 (2012)Google Scholar
  93. 93.
    D. Conlon, W.T. Gowers, Combinatorial theorems in sparse random sets (2010), arXiv/1011.4310Google Scholar
  94. 94.
    D. Conlon, J. Fox, Y. Zhao, Extremal results in sparse pseudorandom graphs (2012), arXiv/1204.6645Google Scholar
  95. 95.
    D. Covert, D.Hart, A. Iosevich, D. Koh, M. Rudnev, Generalized incidence theorems, homogeneous forms and sum-product estimates in finite fields. European J. Combin. 31(1), 306–319 (2010)MathSciNetCrossRefMATHGoogle Scholar
  96. 96.
    E. Croot, D. Hart, On sums and products in \(\mathbb{C}[x]\). Ramanujan J. 22, 33–54 (2010)MathSciNetCrossRefMATHGoogle Scholar
  97. 97.
    E. Croot, V. F. Lev, Open problems in additive combinatorics. In Additive Combinatorics, CRM Proc. Lecture Notes, Amer. Math. Soc., vol. 43 (2007), pp. 207–233Google Scholar
  98. 98.
    E. Croot, O. Sisask, A probabilistic technique for finding almost-periods of convolutions. Geom. Funct. Anal. 20, 1367–1396 (2010)MathSciNetCrossRefMATHGoogle Scholar
  99. 99.
    D. Dachman-Soled, R. Gennaro, H. Krawczyk, T. Malkin, Computational extractors and pseudorandomness. In Proc. 9th Int. Conf. Theory Cryptogr. (TCC ’12) (2012), pp. 383–403Google Scholar
  100. 100.
    Y. Dodis, D. Wichs, Non-malleable extractors and symmetric key cryptography from weak secrets. In Proc. 41st Annu. ACM Symp. Theory Comput (STOC ’09) (2009), pp. 601–610Google Scholar
  101. 101.
    Z. Dvir, From randomness extraction to rotating needles. SIGACT News 40(4), 46–61 (2009)CrossRefGoogle Scholar
  102. 102.
    Z. Dvir, On the size of Kakeya sets in finite fields. J. Amer. Math. Soc. 22(4), 1093–1097 (2009)MathSciNetCrossRefMATHGoogle Scholar
  103. 103.
    Z. Dvir, A. Shpilka, Towards dimension expanders over finite fields. Combinatorica 31(3), 305–320 (2011)MathSciNetCrossRefMATHGoogle Scholar
  104. 104.
    Z. Dvir, A. Wigderson, Monotone expanders: Constructions and applications. Theory Comput. 6(1), 291–308 (2010)MathSciNetCrossRefGoogle Scholar
  105. 105.
    Z. Dvir, A. Wigderson, Kakeya sets, new mergers, and old extractors. SIAM J. Comput. 40(3), 778–792 (2011)MathSciNetCrossRefMATHGoogle Scholar
  106. 106.
    Z. Dvir, A. Gabizon, A. Wigderson, Extractors and rank extractors for polynomial sources. Comput. Complex. 18, 1–58 (2009)MathSciNetCrossRefMATHGoogle Scholar
  107. 107.
    Z. Dvir, S. Kopparty, S. Saraf, M. Sudan, Extensions to the method of multiplicities, with applications to kakeya sets and mergers. In Proc. 50th Annu. IEEE Symp. Found. Comput. Sci. (FOCS ’09) (2009), pp. 181–190Google Scholar
  108. 108.
    M. Einsiedler, T. Ward, Ergodic Theory: With a View Towards Number Theory (Springer, Berlin, 2010)Google Scholar
  109. 109.
    G. Elekes, On the number of sums and products. Acta Arith. 81, 365–367 (1997)MathSciNetMATHGoogle Scholar
  110. 110.
    M. Elkin, An improved construction of progression-free sets. Israel J. Math. 184, 93–128 (2011)MathSciNetCrossRefMATHGoogle Scholar
  111. 111.
    P. Erdős, E. Szemerédi, On sums and products of integers. In Studies in Pure Mathematics (Birkhäuser, Basel, 1983), pp. 213–218Google Scholar
  112. 112.
    P. Erdős, P. Turán, On some sequences of integers. J. Lond. Math. Soc. 11, 261–264 (1936)CrossRefGoogle Scholar
  113. 113.
    P. Erdős, P. Frankl, V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs Combin. 2, 113–121 (1986)MathSciNetCrossRefGoogle Scholar
  114. 114.
    R. Ferguson, C. Hoffman, F. Luca, A. Ostafe, I.E. Shparlinski, Some additive combinatorics problems in matrix rings. Rev. Mat. Complut. 23, 1–13 (2010)MathSciNetCrossRefGoogle Scholar
  115. 115.
    J. Fox, A new proof of the graph removal lemma. Ann. Math. 174(1), 561–579 (2011)CrossRefMATHGoogle Scholar
  116. 116.
    G.A. Freiman, Foundations of a Structural Theory of Set Addition, Translated from the Russian. Translations of Mathematical Monographs, vol. 37, Amer. Math. Soc., Providence, RI, 1973Google Scholar
  117. 117.
    G.A. Freiman, D. Grynkiewicz, O. Serra, Y.V. Stanchescu, Inverse additive problems for Minkowski sumsets I. Collect. Math. 63(3), 261–286 (2012)Google Scholar
  118. 118.
    G.A. Freiman, D. Grynkiewicz, O. Serra, Y.V. Stanchescu, Inverse additive problems for Minkowski sumsets II. J. Geom. Anal. 23(1), 395–414 (2013)Google Scholar
  119. 119.
    E. Friedgut, Hunting for sharp thresholds. Random Structures Algorithms 26(1–2), 37–51 (2005)MathSciNetCrossRefMATHGoogle Scholar
  120. 120.
    E. Friedgut, V. Rödl, A. Ruciński, P. Tetali, A sharp threshold for random graphs with a monochromatic triangle in every edge coloring. Mem. Amer. Math. Soc. 179(845), vi+66 (2006)Google Scholar
  121. 121.
    J.B. Friedlander, S. Konyagin, I.E. Shparlinski, Some doubly exponential sums over \(\mathbb{Z}_{m}\). Acta Arith. 105(4), 349–370 (2002)MathSciNetCrossRefMATHGoogle Scholar
  122. 122.
    H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31, 204–256 (1977)MathSciNetCrossRefMATHGoogle Scholar
  123. 123.
    H. Furstenberg, Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations. J. Anal. Math. 34{,} 275–291 (1978)MathSciNetCrossRefMATHGoogle Scholar
  124. 124.
    H. Furstenberg, Y. Katznelson, A density version of the Hales-Jewett theorem. J. Anal. Math. 57, 64–119 (1991)MathSciNetMATHGoogle Scholar
  125. 125.
    A. Gamburd, D. Jakobson, P. Sarnak, Spectra of elements in the group ring of SU(2). J. Eur. Math. Soc. 1, 51–85 (1999)MathSciNetCrossRefMATHGoogle Scholar
  126. 126.
    M.Z. Garaev, An explicit sum-product estimate in \(\mathbb{F}_{p}\). Int. Math. Res. Not. 11, 1-11 (2007) Article ID rnm035Google Scholar
  127. 127.
    M.Z. Garaev, A quantified version of Bourgain’s sum-product estimate in \(\mathbb{F}_{p}\) for subsets of incomparable sizes. Electron. J. Combin. 15, (2008) Article #R58Google Scholar
  128. 128.
    M.Z. Garaev, The sum-product estimate for large subsets of prime fields. Proc. Amer. Math. Soc. 136, 2735–2739 (2008)MathSciNetCrossRefMATHGoogle Scholar
  129. 129.
    M.Z. Garaev, Sums and products of sets and estimates of rational trigonometric sums in fields of prime order. Russ. Math. Surv. 65(4), 599–658 (2010)MathSciNetCrossRefMATHGoogle Scholar
  130. 130.
    M.Z. Garaev, C.-Y. Shen, On the size of the set A(A + 1). Math. Z. 265, 125–132 (2010)MathSciNetCrossRefMATHGoogle Scholar
  131. 131.
    J. Garibaldi, A. Iosevich, S. Senger, The Erdős distance problem, Amer. Math. Soc., Providence, RI, 2011Google Scholar
  132. 132.
    W. Gasarch, C. Kruskal, A Parrish, Purely combinatorial proofs of van der Waerden-type theorems, Draft book (2010)Google Scholar
  133. 133.
    N. Gill, H. Helfgott, Growth of small generating sets in \(SL_{n}(\mathbb{Z}/p\mathbb{Z})\). Int. Math. Res. Not. 2010, 26 (2010) Article ID rnq244Google Scholar
  134. 134.
    N. Gill, H. Helfgott, Growth in solvable subgroups of \(GL_{r}(\mathbb{Z}/p\mathbb{Z})\) (2010), arXiv/1008.5264Google Scholar
  135. 135.
    A.A. Glibichuk, Sums of powers of subsets of an arbitrary finite field. Izv. Math. 75(2), 253–285 (2011)MathSciNetCrossRefMATHGoogle Scholar
  136. 136.
    A.A. Glibichuk, M. Rudnev, On additive properties of product sets in an arbitrary finite field. J. Anal. Math. 108, 159–170 (2009)MathSciNetCrossRefMATHGoogle Scholar
  137. 137.
    O. Goldreich (ed.), Property Testing: Current Research and surveys. Lecture Notes in Computer Science, vol. 6390 (Springer, 2010)Google Scholar
  138. 138.
    O. Goldreich, S. Goldwasser, D. Ron, Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)MathSciNetCrossRefMATHGoogle Scholar
  139. 139.
    D.A. Goldston, C.Y. Yildirim, Higher correlations of divisor sums related to primes I: Triple correlations. Integers 3, 66 (2003) paper A5Google Scholar
  140. 140.
    D.A. Goldston, C.Y. Yildirim, Higher correlations of divisor sums related to primes III: small gaps between primes. Proc. London Math. Soc. 95(3), 653–686 (2007)MathSciNetCrossRefMATHGoogle Scholar
  141. 141.
    G. Golub, M. Mahoney, P. Drineas, L.H. Lim, Bridging the gap between numerical linear algebra, theoretical computer science, and data applications. SIAM News 9(8), (2006)Google Scholar
  142. 142.
    W.T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8, 529–551 (1998).MathSciNetCrossRefMATHGoogle Scholar
  143. 143.
    W.T. Gowers, A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11(3), 465–588 (2001)MathSciNetCrossRefMATHGoogle Scholar
  144. 144.
    W.T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem. Ann. Math. (2) 166(3), 897–946 (2007)Google Scholar
  145. 145.
    W.T. Gowers, Decompositions, approximate structure, transference, and the Hahn-Banach theorem. Bull. London Math. Soc. 42, 573–606 (2010)MathSciNetCrossRefMATHGoogle Scholar
  146. 146.
    W.T. Gowers, J. Wolf, Linear forms and higher-degree uniformity for functions on \(\mathbb{F}_{p}^{n}\). Geom. Funct. Anal. 21, 36–69 (2011)MathSciNetCrossRefMATHGoogle Scholar
  147. 147.
    W.T. Gowers, J. Wolf, Linear forms and quadratic uniformity for functions on \(\mathbb{Z}_{N}\). J. Anal. Math. 115, 121–186 (2011)MathSciNetCrossRefGoogle Scholar
  148. 148.
    W.T. Gowers, J. Wolf, Linear forms and quadratic uniformity for functions on \(\mathbb{F}_{p}^{n}\). Mathematika 57(2), 215–237 (2012)MathSciNetCrossRefGoogle Scholar
  149. 149.
    R.L. Graham, B.L. Rothschild, J.H. Spencer, Ramsey Theory, 2nd edn. (Wiley, New York, 1990)MATHGoogle Scholar
  150. 150.
    B. Green, Finite field models in arithmetic combinatorics. In Surveys in Combinatorics, London Math. Soc. Lecture Notes, vol. 327 (2005), pp. 1–27Google Scholar
  151. 151.
    B. Green, Approximate groups and their applications: work of Bourgain, Gamburd, Helfgott and Sarnak. In Current Events Bulletin of the AMS (2010), p. 25Google Scholar
  152. 152.
    B. Green, I. Ruzsa, Freiman’s theorem in an arbitrary Abelian group. J. Lond. Math. Soc. 75, 163–175 (2007)MathSciNetCrossRefMATHGoogle Scholar
  153. 153.
    B. Green, T. Tao, An inverse theorem for the Gowers U 3-norm, with applications. Proc. Edinburgh Math. Soc. 51(1), 73–153 (2008)MathSciNetCrossRefMATHGoogle Scholar
  154. 154.
    B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions. Ann. Math. 167, 481–547 (2008)MathSciNetCrossRefMATHGoogle Scholar
  155. 155.
    B. Green, T. Tao, Freiman’s theorem in finite fields via extremal set theory. Combin. Probab. Comput. 18, 335–355 (2009)MathSciNetCrossRefMATHGoogle Scholar
  156. 156.
    B. Green, T. Tao, New bounds for Szemerédi’s theorem, II: a new bound for r 4(N). In Analytic Number Theory: Essays in Honour of Klaus Roth (Cambridge University Press, Cambridge, 2009), pp. 180–204Google Scholar
  157. 157.
    B. Green, T. Tao, The distribution of polynomials over finite fields, with applications to the Gowers norms. Contrib. Discrete Math. 4(2), 1–36 (2009)MathSciNetMATHGoogle Scholar
  158. 158.
    B. Green,T. Tao, An arithmetic regularity lemma, associated counting lemma, and applications. In An Irregular Mind: Szemerédi is 70, Bolyai Soc. Math. Stud., vol. 21 (2010), pp. 261–334Google Scholar
  159. 159.
    B. Green, T. Tao, An equivalence between inverse sumset theorems and inverse conjectures for the U 3-norm. Math. Proc. Camb. Phil. Soc. 149(1), 1–19 (2010)MathSciNetCrossRefMATHGoogle Scholar
  160. 160.
    B. Green, T. Tao, Linear equations in primes. Ann. Math. 171(3), 1753–1850 (2010)MathSciNetCrossRefMATHGoogle Scholar
  161. 161.
    B. Green, T. Tao, Yet another proof of Szemerédi’s theorem. In An irregular mind: Szemerédi is 70, Bolyai Soc. Math. Stud., vol. 21 (2010), pp. 335–342Google Scholar
  162. 162.
    B. Green, T. Tao, New bounds for Szemerédi’s theorem, Ia: Progressions of length 4 in finite field geometries revisited (2012), arXiv/1205.1330Google Scholar
  163. 163.
    B. Green, T. Tao, T. Ziegler, An inverse theorem for the Gowers U 4-norm. Glasgow Math. J. 53, 1–50 (2011)MathSciNetCrossRefMATHGoogle Scholar
  164. 164.
    B. Green, T. Tao, T. Ziegler, An inverse theorem for the Gowers U s + 1[N]-norm. Ann. Math. 176(2), 1231–1372 (2012)Google Scholar
  165. 165.
    B. Green, J. Wolf, A note on Elkin’s improvement of Behrend’s construction. In Additive Number Theory (Springer, New York, 2010), pp. 141–144Google Scholar
  166. 166.
    V. Guruswami, Better extractors for better codes? In Proc. 36th Annu. ACM Symp. Theory Comput. (STOC ’04) (2004), pp. 436–444Google Scholar
  167. 167.
    V. Guruswami, C. Umans, S. P. Vadhan, Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes. J. ACM 56(4), 1–34 (2009)MathSciNetCrossRefGoogle Scholar
  168. 168.
    L. Guth, The endpoint case of the Bennett-Carbery-Tao multilinear Kakeya conjecture. Acta Math. 205(2), 263–286 (2010)MathSciNetCrossRefMATHGoogle Scholar
  169. 169.
    L. Guth, N.H. Katz, Algebraic methods in discrete analogs of the Kakeya problem. Adv. Math. 225(5), 2828–2839 (2010)MathSciNetCrossRefMATHGoogle Scholar
  170. 170.
    L. Guth, N.H. Katz, On the Erdős distinct distance problem in the plane (2010), arXiv/1011.4105Google Scholar
  171. 171.
    A.W. Hales, R.I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106, 222–229 (1963)MathSciNetCrossRefMATHGoogle Scholar
  172. 172.
    Y.O. Hamidoune, An isoperimetric method in additive theory. J. Algebra 179(2), 622–630 (1996)MathSciNetCrossRefMATHGoogle Scholar
  173. 173.
    Y.O. Hamidoune, Some additive applications of the isoperimetric approach. Ann. Inst. Fourier (Grenoble) 58(6), 2007–2036 (2008)Google Scholar
  174. 174.
    Y.O. Hamidoune, The isoperimetric method. In Combinatorial Number Theory and Additive Group Theory, Adv. Courses Math, CRM Barcelona (Birkhäuser, Basel, 2009), pp. 241–252.Google Scholar
  175. 175.
    Y.O. Hamidoune, Topology of Cayley graphs applied to inverse additive problems. In Proc. 3rd Int. Workshop Optimal Netw. Topol. (IWONT 2010) (Barcelona, 2011), pp. 265–283Google Scholar
  176. 176.
    E. Haramaty, A. Shpilka, On the structure of cubic and quartic polynomials. In Proc. 42nd Annu. ACM Symp. Theory Comput (STOC ’10) (2010), pp. 331–340Google Scholar
  177. 177.
    E. Haramaty, A. Shpilka, M. Sudan, Optimal testing of multivariate polynomials over small prime fields. In Proc. 52nd Annu. IEEE Symp. Found. Comput. Sci. (FOCS ’11) (2011), pp. 629–637Google Scholar
  178. 178.
    D. Hart, A. Iosevich, J. Solymosi, Sum-product estimates in finite fields via Kloosterman sums. Int. Math. Res. Notices 2007, 14 (2007) Article ID rnm007Google Scholar
  179. 179.
    D. Hart, A. Iosevich, D. Koh, M. Rudnev, Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture. Trans. Amer. Math. Soc. 363, 3255–3275 (2011)MathSciNetCrossRefMATHGoogle Scholar
  180. 180.
    D. Hart, L. Li, C.-Y. Shen, Fourier analysis and expanding phenomena in finite fields. Proc. Amer. Math. Soc. 141, 461–473 (2013)Google Scholar
  181. 181.
    H. Hatami, S. Lovett, Correlation testing for affine invariant properties on \(F_{p}^{n}\) in the high error regime. In Proc. 43rd Annu. ACM Symp. Theory Comput (STOC ’11) (2011), pp. 187–194Google Scholar
  182. 182.
    N. Hegyvári, F. Hennecart, Explicit constructions of extractors and expanders. Acta Arith. 140, 233–249 (2009)MathSciNetCrossRefMATHGoogle Scholar
  183. 183.
    H. Helfgott, Growth and generation in \(SL_{2}(\mathbb{Z}/p\mathbb{Z})\). Ann. Math. 167(2), 601–623 (2008)MathSciNetCrossRefMATHGoogle Scholar
  184. 184.
    H. Helfgott, Growth in \(SL_{3}(\mathbb{Z}/p\mathbb{Z})\). J. Eur. Math. Soc. 13(3), 761–851 (2011)MathSciNetCrossRefMATHGoogle Scholar
  185. 185.
    H. Helfgott, M. Rudnev, An explicit incidence theorem in \(\mathbb{F}_{p}\). Mathematika 57(1), 135–145 (2011)MathSciNetCrossRefMATHGoogle Scholar
  186. 186.
    S. Hoory, N. Linial, A. Wigderson, Expander graphs and their applications. Bull. Amer. Math. Soc. 43, 439–561 (2006)MathSciNetCrossRefMATHGoogle Scholar
  187. 187.
    C. Hoppen, Y. Kohayakawa, C.G. Moreira, R.M. Sampaio, Property testing and parameter testing for permutations. In Proc. 21th Annu. ACM-SIAM Symp. Discrete Algorithms (2010), pp. 66–75Google Scholar
  188. 188.
    B. Host, B. Kra, Nonconventional ergodic averages and nilmanifolds. Ann. Math. (2) 161(1), 397–488 (2005)Google Scholar
  189. 189.
    B. Host, B. Kra, A point of view on Gowers uniformity norms. New York J. Math. 18, 213–248 (2012)MathSciNetMATHGoogle Scholar
  190. 190.
    E. Hrushovski, Stable group theory and approximate subgroups. J. Amer. Math. Soc. 25, 189–243 (2012)MathSciNetCrossRefMATHGoogle Scholar
  191. 191.
    A. Iosevich, O. Roche-Newton, M. Rudnev, On an application of Guth-Katz theorem. Math. Res. Lett. 18(4), 1–7 (2011)MathSciNetGoogle Scholar
  192. 192.
    D. Jetchev, O. Özen, M. Stam, Collisions are not incidental: a compression function exploiting discrete geometry. In Proc. 9th Int. Conf. Theory Cryptogr. (TCC ’12) (2012), pp. 303–320Google Scholar
  193. 193.
    T. Jones, Explicit incidence bounds over general finite fields. Acta Arith. 150, 241–262 (2011)MathSciNetCrossRefMATHGoogle Scholar
  194. 194.
    T. Jones, An improved incidence bound for fields of prime order (2011), arXiv/1110.4752Google Scholar
  195. 195.
    T. Jones, New results for the growth of sets of real numbers (2012), arXiv/1202.4972Google Scholar
  196. 196.
    T. Jones, Further improvements to incidence and Beck-type bounds over prime finite fields (2012), arXiv/1206.4517Google Scholar
  197. 197.
    S. Jukna, Extremal Combinatorics: With Applications in Computer Science, 2nd edn. (Springer, Heidelberg, 2011)CrossRefMATHGoogle Scholar
  198. 198.
    G. Kalai, S. Safra, Threshold phenomena and infl uence: perspectives from mathematics, computer science, and economics. In Computational Complexity and Statistical Physics (Oxford University Press, New York, 2006), pp. 25–60Google Scholar
  199. 199.
    Y.T. Kalai, X. Li, A. Rao, 2-Source extractors under computational assumptions and cryptography with defective randomness. In Proc. 50th Annu. IEEE Symp. Found. Comput. Sci. (FOCS ’09) (2009), pp. 617–626.Google Scholar
  200. 200.
    J. Kamp, A. Rao, S. Vadhan, D. Zuckerman, Deterministic extractors for small-space sources. J. Comput. System Sci. 77, 191–220 (2011)MathSciNetCrossRefMATHGoogle Scholar
  201. 201.
    N. Katz, C.-Y. Shen, A slight improvement to garaevs sum product estimate. Proc. Amer. Math. Soc. 136(7), 2499–2504 (2008)MathSciNetCrossRefMATHGoogle Scholar
  202. 202.
    N. Katz, C.-Y. Shen, Garaev’s inequality in finite fields not of prime order. Online J. Anal. Comb. 3(3), 6 (2008)MathSciNetGoogle Scholar
  203. 203.
    T. Kaufman, S. Lovett, Worst case to average case reductions for polynomials. In Proc. 49th Annu. IEEE Symp. Found. Comput. Sci. (FOCS ’08) (2008), pp. 166–175Google Scholar
  204. 204.
    T. Kaufman, S. Lovett, New extension of the Weil bound for character sums with applications to coding. In Proc. 52nd Annu. IEEE Symp. Found. Comput. Sci. (FOCS ’11) (2011), pp. 788–796Google Scholar
  205. 205.
    J. Komlós, M. Simonovits, Szemerédi’s regularity lemma and its applications in graph theory. In Combinatorics, Paul Erdős is eighty, Bolyai Soc. Math. Stud. 2, vol. 2 (1996), pp. 295–352Google Scholar
  206. 206.
    E. Kowalski, Explicit growth and expansion for SL 2 (2012), arXiv/1201.1139Google Scholar
  207. 207.
    B. Kra, The Green-Tao Theorem on arithmetic progressions in the primes: an ergodic point of view. Bull. Amer. Math. Soc. 43(1), 3–23 (2005)MathSciNetCrossRefGoogle Scholar
  208. 208.
    B. Kra, From combinatorics to ergodic theory and back again. Proc. Int. Congr. Math. III, 57–76 (2006)Google Scholar
  209. 209.
    B. Kra, Ergodic methods in additive combinatorics. In Additive combinatorics, CRM Proc. Lecture Notes, Amer. Math. Soc., vol. 43 (2007), pp. 103–144Google Scholar
  210. 210.
    B. Kra, Poincaré recurrence and number theory: thirty years later. Bull. Amer. Math. Soc. 48, 497–501 (2011)MathSciNetCrossRefMATHGoogle Scholar
  211. 211.
    I. Łaba, M. Pramanik, Arithmetic progressions in sets of fractional dimension. Geom. Funct. Anal. 19(2), 429–456 (2009)MathSciNetCrossRefMATHGoogle Scholar
  212. 212.
    T.H. Lê, Green-Tao theorem in function fields Acta Arith. 147(2), 129–152 (2011)Google Scholar
  213. 213.
    V.F. Lev, Character-free approach to progression-free sets. Finite Fields Appl. 18(2), 378–383 (2012)MathSciNetCrossRefMATHGoogle Scholar
  214. 214.
    L. Li, Slightly improved sum-product estimates in fields of prime order. Acta Arith. 147(2), 153–160 (2011)MathSciNetCrossRefMATHGoogle Scholar
  215. 215.
    X. Li, A new approach to affine extractors and dispersers. In Proc. 2011 IEEE 26th Annu. Conf. Comput. Complexity (CCC ’11) (2011), pp. 137–147Google Scholar
  216. 216.
    X. Li, Non-malleable extractors, two-source extractors and privacy amplification, In Proceeding 53rd Annual IEEE Symposium Foundation Computer Science (FOCS ’12), (IEEE, New york, 2012), pp. 688–697Google Scholar
  217. 217.
    L. Li, O. Roche-Newton, An improved sum-product estimate for general finite fields. SIAM J. Discrete Math. 25(3), 1285–1296 (2011)MathSciNetCrossRefMATHGoogle Scholar
  218. 218.
    L. Li, J. Shen, A sum-division estimate of reals. Proc. Amer. Math. Soc. 138(1), 101–104 (2010)MathSciNetCrossRefMATHGoogle Scholar
  219. 219.
    Y. Lin, J. Wolf, On subsets of \(\mathbb{F}_{q}^{n}\) containing no k-term progressions. European J. Combin. 31(5), 1398–1403 (2010)MathSciNetCrossRefMATHGoogle Scholar
  220. 220.
    H. Lipmaa, Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In Proc. 9th Int. Conf. Theory Cryptogr. (TCC ’12) (2012), pp. 169–189Google Scholar
  221. 221.
    H. Liu, Gowers uniformity norm and pseudorandom measures of the pseudorandom binary sequences. Int. J. Number Theory 7(5), 1279–1302 (2011)MathSciNetCrossRefMATHGoogle Scholar
  222. 222.
    L. Lovász, B. Szegedy, Regularity partitions and the topology on graphons. In An irregular mind: Szemeredi is 70, Bolyai Soc. Math. Stud., vol. 21 (2010), pp. 415–446Google Scholar
  223. 223.
    S. Lovett, Unconditional pseudorandom generators for low degree polynomials. Theory Comput. 5(1), 69–82 (2009)MathSciNetCrossRefGoogle Scholar
  224. 224.
    S. Lovett, Equivalence of polynomial conjectures in additive combinatorics. Combinatorica 32(5), 607–618 (2012)Google Scholar
  225. 225.
    S. Lovett, R. Meshulam, A. Samorodnitsky, Inverse conjecture for the Gowers norm is false. In Proc. 40th Annu. ACM Symp. Theory Comput. (STOC ’08) (2008), pp. 547–556Google Scholar
  226. 226.
    S. Lovett, P. Mukhopadhyay, A. Shpilka, Pseudorandom generators for CC0[p] and the Fourier spectrum of low-degree polynomials over finite fields. In Proc. 51st Annu. IEEE Symp. Found. Comput. Sci. (FOCS ’10) (2010), pp. 695–704Google Scholar
  227. 227.
    S. Lovett, O. Reingold, L. Trevisan, S. Vadhan, Pseudorandom bit generators that fool modular sums. In Proc. APPROX ’09 / RANDOM ’09, Lecture Notes in Computer Science, vol. 5687 (2009), pp. 615–630Google Scholar
  228. 228.
    C.J. Lu, Encryption against storage-bounded adversaries from on-line strong extractors. J. Cryptology 17(1), 27–42 (2004)MathSciNetCrossRefMATHGoogle Scholar
  229. 229.
    A. Lubotzky, Expander graphs in pure and applied mathematics. Bull. Amer. Math. Soc. 49, 113–162 (2012)MathSciNetCrossRefMATHGoogle Scholar
  230. 230.
    M. Madiman, A. Marcus, P. Tetali, Information-theoretic inequalities in additive combinatorics. In Proc. of the 2010 IEEE Information Theory Workshop (2010), pp. 1–4Google Scholar
  231. 231.
    M. Madiman, A. Marcus, P. Tetali, Entropy and set cardinality inequalities for partition-determined functions. Random Structures Algorithms 40(4), 399–424 (2012)MathSciNetCrossRefMATHGoogle Scholar
  232. 232.
    M. Malliaris, S. Shelah, Regularity lemmas for stable graphs. Trans. Amer. Math. Soc. (to appear)Google Scholar
  233. 233.
    L. Matthiesen, Linear correlations amongst numbers represented by positive definite binary quadratic forms. Acta Arith. 154, 235–306 (2012)Google Scholar
  234. 234.
    R. Meshulam, On subsets of finite Abelian groups with no 3-term arithmetic progressions. J. Combin. Theory, Ser. A 71(1), 168–172 (1995)Google Scholar
  235. 235.
    P. Miltersen, N. Nisan, S. Safra, A. Wigderson, On data structures and asymmetric communication complexity. J. Comput. Syst. Sci. 57(1), 37–49 (1998)MathSciNetCrossRefMATHGoogle Scholar
  236. 236.
    B. Nagle, V. Rödl, M. Schacht, The counting lemma for regular k-uniform hypergraphs. Random Structures Algorithms 28, 113–179 (2006)MathSciNetCrossRefMATHGoogle Scholar
  237. 237.
    M.B. Nathanson, Additive Number Theory: The Classical Bases, vol. 164 (Springer, New York, 1996)CrossRefMATHGoogle Scholar
  238. 238.
    M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, vol. 165 (Springer, New York, 1996)CrossRefMATHGoogle Scholar
  239. 239.
    M.B. Nathanson, Generalized additive bases, König’s lemma, and the Erdős-Turán conjecture. J. Number Theory 106(1), 70–78 (2004)MathSciNetCrossRefMATHGoogle Scholar
  240. 240.
    M.A. Nielsen, Introduction to the Polymath project and “density Hales-Jewett and Moser numbers”, In An Irregular Mind: Szemerédi is 70, Bolyai Soc. Math. Stud., vol. 21 (2010), pp. 651–657CrossRefGoogle Scholar
  241. 241.
    J.I. Novak, Topics in combinatorics and random matrix theory, PhD thesis, Queen’s University, 2009Google Scholar
  242. 242.
    K. O’Bryant, Sets of integers that do not contain long arithmetic progressions. Electron. J. Combin. 18, (2011) Article #P59Google Scholar
  243. 243.
    A. Ostafe, I.E. Shparlinski, On the Waring problem with Dickson polynomials in finite fields. Proc. Amer. Math. Soc. 139, 3815–3820 (2011)MathSciNetCrossRefMATHGoogle Scholar
  244. 244.
    A. Plagne, On threshold properties of k-SAT: An additive viewpoint. European J. Combin. 27, 1186–1198 (2006)MathSciNetCrossRefMATHGoogle Scholar
  245. 245.
    A. Plagne, W.A. Schmid, An application of coding theory to estimating Davenport constants. Des. Codes Cryptogr. 61, 105–118 (2011)MathSciNetCrossRefMATHGoogle Scholar
  246. 246.
    D.H.J. Polymath, A new proof of the density Hales-Jewett theorem. Ann. Math. 175(3), 1283–1327 (2012)MathSciNetCrossRefMATHGoogle Scholar
  247. 247.
    P. Potgieter, Arithmetic progressions in Salem-type subsets of the integers. J. Fourier Anal. Appl. 17, 1138–1151 (2011)MathSciNetCrossRefMATHGoogle Scholar
  248. 248.
    L. Pyber and E. Szabó, Growth in finite simple groups of Lie type of bounded rank (2010), arXiv/1005.1858Google Scholar
  249. 249.
    R.A. Rankin, Sets of integers containing not more than a given number of terms in arithmetical progression. Proc. Roy. Soc. Edinburgh Sect. A 65, 332–344 (1962)MathSciNetMATHGoogle Scholar
  250. 250.
    A. Rao, Extractors for a constant number of polynomially small min-entropy independent sources. SIAM J. Comput. 39(1), 168–194 (2009)MathSciNetCrossRefMATHGoogle Scholar
  251. 251.
    A. Rao, Extractors for low-weight affine sources. In Proc. 24th Annu. IEEE Conf. Comput. Complexity (CCC ’09) (2009), pp. 95–101.Google Scholar
  252. 252.
    O. Reingold, L. Trevisan, M. Tulsiani, S. Vadhan, Dense subsets of pseudorandom sets. Electron. Colloq. Comput. Complexity (ECCC), Technical Report TR08-045 (2008)Google Scholar
  253. 253.
    O. Roche-Newton, M. Rudnev, Areas of rectangles and product sets of sum sets (2012), arXiv/1203.6237Google Scholar
  254. 254.
    V. Rödl, M. Schacht, Property testing in hypergraphs and the removal lemma. In Proc. 39th Annu. ACM Symp. Theory Comput. (STOC ’07) (2007), pp. 488–495Google Scholar
  255. 255.
    V. Rödl, M. Schacht, Regular partitions of hypergraphs: Regularity lemmas. Combin. Probab. Comput. 16(6), 833–885 (2007)MathSciNetMATHGoogle Scholar
  256. 256.
    V. Rödl, M. Schacht, Regular partitions of hypergraphs: Counting lemmas. Combin. Probab. Comput. 16(6), 887–901 (2007)MathSciNetMATHGoogle Scholar
  257. 257.
    V. Rödl, M. Schacht, Generalizations of the removal lemma. Combinatorica 29(4), 467–501 (2009)MathSciNetCrossRefMATHGoogle Scholar
  258. 258.
    V. Rödl, M. Schacht, Regularity lemmas for graphs. In Fete of Combinatorics and Computer Science, Bolyai Soc. Math. Stud., vol. 20 (2010), pp. 287–325Google Scholar
  259. 259.
    V. Rödl, J. Skokan, Regularity lemma for k-uniform hypergraphs. Random Structures Algorithms 25, 1–42 (2004)MathSciNetCrossRefMATHGoogle Scholar
  260. 260.
    V. Rödl, J. Skokan, Applications of the regularity lemma for uniform hypergraphs. Random Struct. Algorithms 28, 180–194 (2006)CrossRefMATHGoogle Scholar
  261. 261.
    D. Ron, Property testing: A learning theory perspective. Found. Trends Mach. Learn. 1(3), 307–402 (2008)CrossRefGoogle Scholar
  262. 262.
    D. Ron, Algorithmic and analysis techniques in property testing. Found. Trends Theor. Comput. Sci. 5(2), 73–205 (2009)MathSciNetCrossRefMATHGoogle Scholar
  263. 263.
    V. Rosta, Ramsey theory applications. Electron. J. Combin. 11, 43 (2004), Article #DS13Google Scholar
  264. 264.
    K. F. Roth, On certain sets of integers. J. Lond. Math. Soc. 28, 104–109 (1953)CrossRefMATHGoogle Scholar
  265. 265.
    M. Rudelson, R. Vershynin, Non-asymptotic theory of random matrices: extreme singular values. In Proc. Internat. Congr. Math., vol. III (Hindustan Book Agency, New Delhi, 2011), pp. 1576–1602Google Scholar
  266. 266.
    M. Rudnev, An improved sum-product inequality in fields of prime order. Int. Math. Res. Not. (16), 3693–3705 (2012)Google Scholar
  267. 267.
    M. Rudnev, On new sum-product type estimates (2011), arXiv/1111.4977Google Scholar
  268. 268.
    I.Z. Ruzsa, Sumsets and Entropy. Random Structures Algorithms 34(1), 1–10 (2009)MathSciNetCrossRefMATHGoogle Scholar
  269. 269.
    I.Z. Ruzsa, E. Szemerédi, Triple systems with no six points carrying three triangles, in Combinatorics. Colloq. Math. Soc. J. Bolyai 18, 939–945. (1978)Google Scholar
  270. 270.
    A. Samorodnitsky, Low-degree tests at large distances. In Proc. 39th Annu. ACM Symp. Theory Comput. (STOC ’07) (2007), pp. 506–515Google Scholar
  271. 271.
    A. Samorodnitsky, L. Trevisan, Gowers uniformity, influence of variables, and PCPs. SIAM J. Comput. 39(1), 323–360 (2009)MathSciNetCrossRefMATHGoogle Scholar
  272. 272.
    T. Sanders, Appendix to ‘Roth’s theorem on progressions revisited,’ by J. Bourgain. J. Anal. Math. 104, 193–206 (2008)CrossRefMATHGoogle Scholar
  273. 273.
    T. Sanders, On the Bogolyubov-Ruzsa lemma (2010), arXiv/1011.0107v1Google Scholar
  274. 274.
    T. Sanders, On Roth’s theorem on progressions. Ann. Math. 174(1), 619–636 (2011)CrossRefMATHGoogle Scholar
  275. 275.
    T. Schoen, Near optimal bounds in Freiman’s theorem. Duke Math. J. 158(1), 1–12 (2011)MathSciNetCrossRefMATHGoogle Scholar
  276. 276.
    T. Schoen, I.D. Shkredov, On sumsets of convex sets. Combin. Probab. Comput. 20, 793–798 (2011)MathSciNetCrossRefMATHGoogle Scholar
  277. 277.
    T. Schoen, I.D. Shkredov, Roth’s theorem in many variables (2011), arXiv/1106.1601Google Scholar
  278. 278.
    O. Serra, An isoperimetric method for the small sumset problem. In Surveys in combinatorics, London Math. Soc. Lecture Note Ser., vol. 327 (2005), pp. 119–152Google Scholar
  279. 279.
    R. Shaltiel, Recent developments in explicit construction of extractors. Bull. Eur. Assoc. Theoret. Comput. Sci. 77, 67–95 (2002)MathSciNetMATHGoogle Scholar
  280. 280.
    R. Shaltiel, An introduction to randomness extractors. In ICALP 2011, Part II, ed. by L. Aceto, M. Henzinger, J. Sgall. Lecture Notes in Computer Science, vol. 6756 (2011), pp. 21–41Google Scholar
  281. 281.
    A. Shapira, Green’s conjecture and testing linear-invariant properties. In Proc. 41st Annu. ACM Symp. Theory Comput (STOC ’09) (2009), pp. 159–166.Google Scholar
  282. 282.
    C.-Y. Shen, An extension of Bourgain and Garaev’s sum-product estimates. Acta Arith. 135(4), 351–356 (2008)MathSciNetCrossRefMATHGoogle Scholar
  283. 283.
    C.-Y. Shen, On the sum product estimates and two variables expanders. Publ. Mat. 54(1), 149–157 (2010)MathSciNetMATHGoogle Scholar
  284. 284.
    C.-Y. Shen, Sum-product phenomenon in finite fields not of prime order. Rocky Mountain J. Math. 41(3), 941–948 (2011)MathSciNetCrossRefMATHGoogle Scholar
  285. 285.
    C.-Y. Shen, Algebraic methods in sum-product phenomena. Israel J. Math. 188(1), 123–130 (2012)MathSciNetCrossRefMATHGoogle Scholar
  286. 286.
    I.D. Shkredov, Szemerédi’s theorem and problems on arithmetic progressions. Russian Math. Surveys 61(6), 1101–1166 (2006)MathSciNetCrossRefMATHGoogle Scholar
  287. 287.
    I.D. Shkredov, On a two-dimensional analogue of Szemerédi’s theorem in Abelian groups. Izv. Math. 73(5), 1033–1075 (2009)MathSciNetCrossRefMATHGoogle Scholar
  288. 288.
    I.E. Shparlinski, On the elliptic curve analogue of the sum-product problem. Finite Fields and Their Appl. 14, 721–726 (2008)MathSciNetCrossRefMATHGoogle Scholar
  289. 289.
    I.E. Shparlinski, On the exponential sum-product problem. Indag. Math. 19, 325–331 (2009)MathSciNetCrossRefGoogle Scholar
  290. 290.
    I.E. Shparlinski, Sum-product estimates and multiplicative orders of γ and \(\gamma {+\gamma }^{-1}\) in finite fields. Bull. Aust. Math. Soc. 85, 505–508 (2012)MathSciNetCrossRefMATHGoogle Scholar
  291. 291.
    I.E. Shparlinski, Additive combinatorics over finite fields: New results and applications. In Proc. RICAM-Workshop on Finite Fields and Their Applications: Character Sums and Polynomials, De Gruyter (to appear)Google Scholar
  292. 292.
    J. Solymosi, On sum-sets and product-sets of complex numbers. J. Théor. Nombres Bordeaux 17, 921–924 (2005)MathSciNetCrossRefMATHGoogle Scholar
  293. 293.
    J. Solymosi, On the number of sums and products. Bull. Lond. Math. Soc. 37, 491–494 (2005)MathSciNetCrossRefMATHGoogle Scholar
  294. 294.
    J. Solymosi, Incidences and the spectra of graphs. In Building bridges: between mathematics and computer science, Bolyai Soc. Math. Stud., vol. 19 (2008), pp. 499–513.Google Scholar
  295. 295.
    J. Solymosi, Bounding multiplicative energy by the sumset. Adv. Math. 222(2), 402–408 (2009)MathSciNetCrossRefMATHGoogle Scholar
  296. 296.
    J. Solymosi, Roth type theorems in finite groups, arXiv/1201.3670, (2012).Google Scholar
  297. 297.
    J. Solymosi, T. Tao, An incidence theorem in higher dimensions. Discrete Comput. Geom. 48(2), 255–280 (2012)Google Scholar
  298. 298.
    J. Solymosi, V. Vu, Sum-product estimates for well-conditioned matrices. Bull. London Math. Soc. 41, 817–822 (2009)MathSciNetCrossRefMATHGoogle Scholar
  299. 299.
    B. Sudakov, E. Szemerédi, V. Vu, On a question of Erdős and Moser. Duke Math. J. 129, 129–155 (2005)MathSciNetCrossRefMATHGoogle Scholar
  300. 300.
    M. Sudan, Decoding of Reed-Solomon codes beyond the errorcorrection bound. J. Complexity 13(1), 180–193 (1997)MathSciNetCrossRefMATHGoogle Scholar
  301. 301.
    M. Sudan, L. Trevisan, S.P. Vadhan, Pseudorandom generators without the XOR lemma. J. Comput. Syst. Sci. 62(2), 236–266 (2001)MathSciNetCrossRefMATHGoogle Scholar
  302. 302.
    L. Székely, Crossing numbers and hard Erdős problems in discrete geometry. Combin. Probab. Comput. 6, 353–358 (1997)MathSciNetCrossRefMATHGoogle Scholar
  303. 303.
    E. Szemerédi, On sets of integers containing no four elements in arithmetic progression. Acta Math. Acad. Sci. Hung. 20, 89–104 (1969)CrossRefMATHGoogle Scholar
  304. 304.
    E. Szemerédi, On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27, 199–245 (1975)MathSciNetMATHGoogle Scholar
  305. 305.
    E. Szemerédi, W.T. Trotter Jr., Extremal problems in discrete geometry. Combinatorica 3, 381–392 (1983)MathSciNetCrossRefMATHGoogle Scholar
  306. 306.
    E. Szemerédi, V. Vu, Long arithmetic progressions in sum-sets and the number of x-sum-free sets. Proc. Lond. Math. Soc. 90(2), 273–296 (2005)CrossRefMATHGoogle Scholar
  307. 307.
    E. Szemerédi, V. Vu, Finite and infinite arithmetic progressions in sumsets. Ann. Math. (2) 163(1), 1–35 (2006)Google Scholar
  308. 308.
    E. Szemerédi, V. Vu, Long arithmetic progressions in sumsets: Thresholds and bounds. J. Amer. Math. Soc. 19, 119–169 (2006)MathSciNetCrossRefMATHGoogle Scholar
  309. 309.
    T. Tao, From rotating needles to stability of waves: emerging connections between combinatorics, analysis, and PDE. Notices Amer. Math. Soc. 48(3), 294–303 (2001)MathSciNetMATHGoogle Scholar
  310. 310.
    T. Tao, A quantitative ergodic theory proof of Szemerédi’s theorem. Electron. J. Combin. 13, (2006) Article #R99Google Scholar
  311. 311.
    T. Tao, A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A 113, 1257–1280 (2006)MathSciNetCrossRefMATHGoogle Scholar
  312. 312.
    T. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes. In Proc. Int. Congr Math. (Madrid, Spain, 2006), pp. 581–608Google Scholar
  313. 313.
    T. Tao, The Gaussian primes contain arbitrarily shaped constellations. J. d’Analyse Math. 99, 109–176 (2006)CrossRefMATHGoogle Scholar
  314. 314.
    T. Tao, A correspondence principle between (hyper)graph theory and probability theory, and the (hyper)graph removal lemma. J. Anal. Math. 103, 1–45 (2007)MathSciNetCrossRefMATHGoogle Scholar
  315. 315.
    T. Tao, Product set estimates in noncommutative groups. Combinatorica 28, 547–594 (2008)MathSciNetCrossRefMATHGoogle Scholar
  316. 316.
    T. Tao, Structure and Randomness: Pages from Year One of a Mathematical Blog, Amer. Math. Soc. (2008)Google Scholar
  317. 317.
    T. Tao, The sum-product phenomenon in arbitrary rings. Contrib. Discrete Math. 4(2), 59–82 (2009)MathSciNetMATHGoogle Scholar
  318. 318.
    T. Tao, Freiman’s theorem for solvable groups. Contrib. Discrete Math. 5(2), 137–184 (2010)MathSciNetGoogle Scholar
  319. 319.
    T. Tao, Sumset and inverse sumset theory for Shannon entropy. Combin. Probab. Comput. 19, 603–639 (2010)MathSciNetCrossRefMATHGoogle Scholar
  320. 320.
    T. Tao, Higher Order Fourier Analysis, vol. 142 (American Mathematical Society, Providence, 2012)MATHGoogle Scholar
  321. 321.
    T. Tao, V. Vu, Additive Combinatorics, vol. 105 (Cambridge University Press, Cambridge, 2006)CrossRefMATHGoogle Scholar
  322. 322.
    T. Tao, V. Vu, Random matrices: The circular law. Commun. Contemp. Math. 10(2), 261–307 (2008)MathSciNetCrossRefMATHGoogle Scholar
  323. 323.
    T. Tao, V. Vu, From the Littlewood-Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Amer. Math. Soc. 46, 377–396 (2009)MathSciNetCrossRefMATHGoogle Scholar
  324. 324.
    T. Tao, V. Vu, Random matrices: Universality of local eigenvalue statistics up to the edge, Commun. Math. Phys. 298(2), 549–572 (2010)MathSciNetCrossRefMATHGoogle Scholar
  325. 325.
    T. Tao, T. Ziegler, The primes contain arbitrarily long polynomial progressions. Acta Math. 201, 213–305 (2008)MathSciNetCrossRefMATHGoogle Scholar
  326. 326.
    T. Tao, T. Ziegler, The inverse conjecture for the Gowers norm over finite fields via the correspondence principle. Anal. PDE 3(1), 1–20 (2010)MathSciNetCrossRefMATHGoogle Scholar
  327. 327.
    A. Ta-Shma, D. Zuckerman, Extractor codes. IEEE Trans. Inform. Theory 50(12), 3015–3025 (2004)MathSciNetCrossRefGoogle Scholar
  328. 328.
    C. D. Tóth, The Szemerédi-Trotter theorem in the complex plane (2003), arXiv/0305283Google Scholar
  329. 329.
    H. Towsner, A model theoretic proof of Szemerédi’s theorem (2010), arXiv/1002.4456Google Scholar
  330. 330.
    L. Trevisan, Additive combinatorics and theoretical computer science. ACM SIGACT News 40(2), 50–66 (2009)CrossRefGoogle Scholar
  331. 331.
    L. Trevisan, Pseudorandomness in computer science and in additive combinatorics. In An Irregular Mind: Szemerédi is 70, Bolyai Soc. Math. Stud., vol. 21 (2010), pp. 619–650.Google Scholar
  332. 332.
    M. Tulsiani, J. Wolf, Quadratic Goldreich-Levin theorems. In Proc. 52th Annu. IEEE Symp. Found. Comput. Sci. (FOCS ’11) (2011), pp. 619–628.Google Scholar
  333. 333.
    S.P. Vadhan, Constructing locally computable extractors and cryptosystems in the bounded-storage model. J. Cryptology 17(1), 43–77 (2004)MathSciNetCrossRefMATHGoogle Scholar
  334. 334.
    S.P. Vadhan, The unified theory of pseudorandomness. In Proc. Internat. Congr. Math., vol. IV (Hindustan Book Agency, New Delhi, 2011), pp. 2723–2745.Google Scholar
  335. 335.
    S.P. Vadhan, Pseudorandomness. Found. Trends Theor. Comput. Sci. 7(1–3), 1–336 (2012)Google Scholar
  336. 336.
    L.A. Vinh, The Szemerédi-Trotter type theorem and the sum-product estimate in finite fields. European J. Combin. 32(8), 1177–1181 (2011)MathSciNetCrossRefMATHGoogle Scholar
  337. 337.
    L.A. Vinh, Sum and shifted-product subsets of product-sets over finite rings. Electron. J. Combin. 19(2), (2012) Article #P33Google Scholar
  338. 338.
    E. Viola, New correlation bounds for GF(2) polynomials using Gowers uniformity. Electron. Colloq. Comput. Complexity (ECCC), Technical Report TR06–097 (2006)Google Scholar
  339. 339.
    E. Viola, Selected results in additive combinatorics: An exposition. Theory Comput. Library, Graduate Surveys, 3, 1–15 (2011)Google Scholar
  340. 340.
    E. Viola, A. Wigderson, Norms, XOR lemmas, and lower bounds for polynomials and protocols. Theory Comput. 4, 137–168 (2008)MathSciNetCrossRefGoogle Scholar
  341. 341.
    V. Vu, Random discrete matrices. In Horizons of combinatorics, Bolyai Soc. Math. Stud., vol. 17 (2008), pp. 257–280Google Scholar
  342. 342.
    V. Vu, Sum-product estimates via directed expanders. Math. Res. Lett. 15(2), 375–388 (2008)MathSciNetMATHGoogle Scholar
  343. 343.
    V. Vu, M. M. Wood, P.M. Wood, Mapping incidences. J. Lond. Math. Soc. 84(2), 433–445 (2011)MathSciNetCrossRefMATHGoogle Scholar
  344. 344.
    A. Wigderson and D. Zuckerman, Expanders that beat the eigenvalue bound: Explicit construction and applications. Combinatorica 19(1), 125–138 (1999)MathSciNetCrossRefMATHGoogle Scholar
  345. 345.
    T. Wolff, Recent work connected with the Kakeya problem, Prospects in Mathematics (Princeton, NJ, 1996), pp. 129–162. Amer. Math. Soc., Providence, RI, 1999Google Scholar
  346. 346.
    A. Yehudayoff, Affine extractors over prime fields. Combinatorica 31(2), 245–256 (2011)MathSciNetCrossRefMATHGoogle Scholar
  347. 347.
    J. Zahl, A Szemerédi-Trotter type theorem in \({\mathbb{R}}^{4}\) (2012), arXiv/1203.4600Google Scholar
  348. 348.
    M. Zimand, Simple extractors via constructions of cryptographic pseudorandom generators. Theor. Comput. Sci. 411, 1236–1250 (2010)MathSciNetCrossRefMATHGoogle Scholar
  349. 349.
    D. Zuckerman, Randomness-optimal oblivious sampling. Random Structures Algorithms 11, 345–367 (1997)MathSciNetCrossRefMATHGoogle Scholar
  350. 350.
    D. Zuckerman, Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3(1), 103–128 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada

Personalised recommendations