Advertisement

Structured Hadamard Conjecture

  • Ilias S. Kotsireas
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 43)

Abstract

We present three different formalisms for a structured version of the Hadamard conjecture. Two of these formalisms are new, and we use them to provide independent verifications of some of the previously known computational results on this structured version of the Hadamard conjecture.

Keywords

Diophantine Equation Hadamard Matrice Hadamard Matrix Weight Enumerator Circulant Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author is grateful to the anonymous referees for their careful scrutiny of the original submission and their constructive and pertinent comments that led to a significantly improved version of this paper.

This work is supported by an NSERC grant.

References

  1. 1.
    I. Bárány, A vector-sum theorem and its application to improving flow shop guarantees. Math. Oper. Res. 6(3), 445–452 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    T. Becker, V. Weispfenning, Gröbner Bases. Graduate Texts in Mathematics, vol 141 (Springer, New York, 1993). A computational approach to commutative algebra, In cooperation with Heinz KredelGoogle Scholar
  3. 3.
    P.B. Borwein, R.A. Ferguson, A complete description of Golay pairs for lengths up to 100. Math. Comp. 73(246), 967–985 (2004) [electronic]MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    C.J. Colbourn, J.H. Dinitz (eds), Handbook of Combinatorial Designs, 2nd edn. Discrete Mathematics and its Applications (Boca Raton) (Chapman & Hall/CRC, Boca Raton, 2007)Google Scholar
  5. 5.
    W. de Launey, D.M. Gordon, On the density of the set of known Hadamard orders. Cryptogr. Commun. 2(2), 233–246 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    W. de Launey, D.A. Levin, A Fourier-analytic approach to counting partial Hadamard matrices. Cryptogr. Commun. 2(2), 307–334 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    D.Ž. Djoković, Two Hadamard matrices of order 956 of Goethals-Seidel type. Combinatorica 14(3), 375–377 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    D.Ž. Djoković, Hadamard matrices of order 764 exist. Combinatorica 28(4), 487–489 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    D.Ž. Djoković, Skew-Hadamard matrices of orders 188 and 388 exist. Int. Math. Forum 3(21–24), 1063–1068 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    D.Ž. Djoković, Skew-Hadamard matrices of orders 436, 580, and 988 exist. J. Combin. Des. 16(6), 493–498 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Eliahou, Enumerative combinatorics and coding theory. Enseign. Math. (2) 40(1–2), 171–185 (1994)Google Scholar
  12. 12.
    R.J. Fletcher, M. Gysin, J. Seberry, Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices. Aust. J. Combin. 23, 75–86 (2001)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Fondation Mathématique Jacques Hadamard (FMJH). http://www.fondation-hadamard.fr
  14. 14.
    B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16, 101–121 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    I.P. Goulden, D.M. Jackson, Combinatorial Enumeration (Dover, Mineola, 2004). With a foreword by Gian-Carlo Rota, Reprint of the 1983 original.Google Scholar
  16. 16.
    J. Hadamard, Résolution d’une question relative aux déterminants. Bull. Sci. Mathé., 17, 240–246 (1893)Google Scholar
  17. 17.
    M. Hall Jr., Combinatorial Theory (Blaisdell Publishing Co. Ginn and Co., Waltham/Toronto/London, 1967)zbMATHGoogle Scholar
  18. 18.
    A. Hedayat, W.D. Wallis, Hadamard matrices and their applications. Ann. Statist. 6(6), 1184–1238 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    K.J. Horadam, Hadamard Matrices and Their Applications (Princeton University Press, Princeton, 2007)zbMATHGoogle Scholar
  20. 20.
    K.J. Horadam, Hadamard matrices and their applications: progress 2007–2010. Cryptogr. Commun. 2(2), 129–154 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    H. Kharaghani, B. Tayfeh-Rezaie, A Hadamard matrix of order 428. J. Combin. Design 13(6), 435–440 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    I.S. Kotsireas, C. Koukouvinos, J. Seberry, Hadamard ideals and Hadamard matrices with two circulant cores. Eur. J. Combin. 27(5), 658–668 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    C. Lam, S. Lam, V.D. Tonchev, Bounds on the number of affine, symmetric, and Hadamard designs and matrices. J. Combin. Theory Ser. A 92(2), 186–196 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    C. Lam, S. Lam, V.D. Tonchev, Bounds on the number of Hadamard designs of even order. J. Combin. Design 9(5), 363–378 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    B. Mazur, Number theory as gadfly. Am. Math. Monthly 98(7), 593–610 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    V. Maz’ya, T. Shaposhnikova, Jacques Hadamard, a universal mathematician, in History of Mathematics, vol 14 (American Mathematical Society, Providence, 1998)Google Scholar
  27. 27.
    P. Ó Catháin, Group actions on Hadamard matrices. Master’s Thesis, National University of Ireland, Galway, 2008Google Scholar
  28. 28.
    P. Ó Catháin and M. Röder, The cocyclic Hadamard matrices of order less than 40. Design Codes Cryptogr. 58(1), 73–88 (2011)CrossRefGoogle Scholar
  29. 29.
    J. Seberry, M. Yamada, Hadamard matrices, sequences, and block designs, in Contemporary Design Theory. Wiley-Intersci. Ser. Discrete Math. Optim. (Wiley, New York, 1992), pp. 431–560Google Scholar
  30. 30.
    N.J.A. Sloane, A library of Hadamard matrices. http://www2.research.att.com/~njas/hadamard/
  31. 31.
    R.P. Stanley, Enumerative Combinatorics, vol 1. Cambridge Studies in Advanced Mathematics, 2nd edn., vol 49 (Cambridge University Press, Cambridge, 2012)Google Scholar
  32. 32.
    D.R. Stinson, Combinatorial Designs, Constructions and Analysis (Springer, New York, 2004)zbMATHGoogle Scholar
  33. 33.
    B. Sturmfels Solving systems of polynomial equations, in CBMS Regional Conference Series in Mathematics, vol 97 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2002)Google Scholar
  34. 34.
    B. Sturmfels. Algorithms in invariant theory, in Texts and Monographs in Symbolic Computation, 2nd edn. (Springer, Wien/NewYork/Vienna, 2008)Google Scholar
  35. 35.
    T. Tao, Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett. 11(2–3), 251–258 (2004)MathSciNetzbMATHGoogle Scholar
  36. 36.
    A.L. Whiteman, A family of difference sets. Illinois J. Math. 6, 107–121 (1962)MathSciNetzbMATHGoogle Scholar
  37. 37.
    M. Yamada, Supplementary difference sets and Jacobi sums. Discrete Math. 103(1), 75–90 (1992)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Wilfrid Laurier UniversityWaterlooCanada

Personalised recommendations