Advertisement

The Middle Ear pp 171-210 | Cite as

Modeling of Middle Ear Mechanics

  • W. Robert J. FunnellEmail author
  • Nima Maftoon
  • Willem F. Decraemer
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR)

Abstract

Quantitative understanding of the mechanical behavior of the external and middle ear is important, not only in the quest for improved diagnosis and treatment of conductive hearing loss but also in relation to other aspects of hearing that depend on the conductive pathways. Mathematical modeling is useful in arriving at that understanding. This chapter starts with some background modeling topics: the modeling of three-dimensional geometry and of material properties and the verification and validation of models, including uncertainty analysis and parameter fitting. The remainder of the chapter discusses models that have been presented for the external ear canal, middle ear air cavities, eardrum, ossicular chain, and cochlea. The treatment deals mainly with circuit models and finite-element models and to a lesser extent with two-port, rigid-body, and analytical models. Nonlinear models are discussed briefly. The chapter ends by briefly discussing the application of modeling to pathological conditions, some open questions in middle ear modeling, and the disadvantages and advantages of the finite-element method.

Keywords

Air cavities Circuit models Eardrum External ear canal Finite-element models Image segmentation Material properties Mathematical models Mesh generation Ossicular chain Parameter fitting 3-D shape measurement Tympanic membrane Uncertainty analysis Verification and validation 

Notes

Acknowledgments

This work has been funded by the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council (Canada), and the Research Fund of Flanders (Belgium). We wish to acknowledge the profound contributions of Shyam M. Khanna to middle ear mechanics. W. R. J. Funnell and W. F. Decraemer in particular wish to thank him for his tremendous support as we were beginning our careers and for continuing to be an outstanding role model as a scientist and as a person. We also wish to express our sense of loss at the premature passing of Saumil Merchant. He was an important part of the interface between the clinic and us engineers and physicists.

References

  1. Aernouts, J., & Dirckx, J. (2012). Static versus dynamic gerbil tympanic membrane elasticity: Derivation of the complex modulus. Biomechanics and Modeling in Mechanobiology, 11(6), 829–840.PubMedGoogle Scholar
  2. American Society of Mechanical Engineers (ASME). (2006). Guide for verification and validation in computational solid mechanics. New York: American Society of Mechanical Engineers.Google Scholar
  3. Beer, H.-J., Bornitz, M., Hardtke, H.-J., Schmidt, R., Hofmann, G., Vogel, U., Zahnert, T., & Hüttenbrink K.-B. (1999). Modelling of components of the human middle ear and simulation of their dynamic behaviour. Audiology and Neuro-Otology, 4(3–4), 156–162.PubMedGoogle Scholar
  4. Bell, D. C. (2009). Contrast mechanisms and image formation in helium ion microscopy. Microscopy and Microanalysis, 15(2), 147–153.PubMedGoogle Scholar
  5. Beranek, L. L. (1954). Acoustics. New York: McGraw-Hill.Google Scholar
  6. Bourke, P. (1997). Polygonising a scalar field using tetrahedrons. Geometry, Surfaces, Curves, Polyhedra. Retrieved from: http://paulbourke.net/geometry/polygonise/#tetra. Accessed July 19, 2011.
  7. Broekaert, D. (1995). The tympanic membrane: A biochemical updating of structural components. Acta Oto-Rhino-Laryngologica Belgica, 49, 127–137.PubMedGoogle Scholar
  8. Brown, J. A., Torbatian, Z., Adamson, R. B., Van Wijhe, R., Pennings, R. J., Lockwood, G. R., & Bance, M. L. (2009). High-frequency ex vivo ultrasound imaging of the auditory system. Ultrasound in Medicine & Biology, 35(11), 1899–1907.Google Scholar
  9. Buehler, M. J. (2008). Nanomechanics of collagen fibrils under varying cross-link densities: Atomistic and continuum studies. Journal of the Mechanical Behavior of Biomedical Materials, 1(1), 59–67.PubMedGoogle Scholar
  10. Buytaert, J. A. N., Salih, W. H. M., Dierick, M., Jacobs, P., & Dirckx, J. J. J. (2011). Realistic 3D computer model of the gerbil middle ear, featuring accurate morphology of bone and soft tissue structures. Journal of the Association for Research in Otolaryngology, 12(6), 681–696.PubMedCentralPubMedGoogle Scholar
  11. Campolongo, F., Saltelli, A., & Cariboni, J. (2011). From screening to quantitative sensitivity analysis. A unified approach. Computer Physics Communications, 182(4), 978–988.Google Scholar
  12. Carlton, P. M., Boulanger, J., Kervrann, C., Sibarita, J.-B., Salamero, J., Gordon-Messer, S., Bressan, D., Haber, J.E., Haase, S., Shao, L., Winoto, L., Matsuda, A., Kner, P., Uzawa, S., Gustafsson, M., Kam, Z., Agard, D.A., & Sedat, J.W. (2010). Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proceedings of the National Academy of Sciences of the USA, 107(37), 16016–16022.PubMedCentralPubMedGoogle Scholar
  13. Cerveri, P., & Pinciroli, F. (2001). Symbolic representation of anatomical knowledge: Concept classification and development strategies. Journal of Biomedical Informatics, 34(5), 321–347.PubMedGoogle Scholar
  14. Cheng, T., & Gan, R. Z. (2007). Mechanical properties of stapedial tendon in human middle ear. Journal of Biomechanical Engineering, 129(6), 913–918.PubMedGoogle Scholar
  15. Chien, W., Northrop, C., Levine, S., Pilch, B. Z., Peake, W. T., Rosowski, J. J., & Merchant, S. N. (2009). Anatomy of the distal incus in humans. Journal of the Association for Research in Otolaryngology, 10(4), 485–496.PubMedCentralPubMedGoogle Scholar
  16. Dai, C., Cheng, T., Wood, M. W., & Gan, R. Z. (2007). Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: Experiment and modeling. Hearing Research, 230(1–2), 24–33.PubMedCentralPubMedGoogle Scholar
  17. Danzl, R., Helmli, F., & Scherer, S. (2011). Focus variation—A robust technology for high resolution optical 3D surface metrology. Strojniski Vestnik/Journal of Mechanical Engineering, 57(3), 245–256.Google Scholar
  18. Decraemer, W. F., & Khanna, S. M. (1999). New insights into vibration of the middle ear. In The function and mechanics of normal, diseased and reconstructed middle ears (pp. 23–38). Presented at the 2nd International Symposium on Middle-Ear Mechanics in Research and Otosurgery, Boston, October 21–24.Google Scholar
  19. Decraemer, W. F., Maes, M. A., & Vanhuyse, V. J. (1980). An elastic stress–strain relation for soft biological tissues based on a structural model. Journal of Biomechanics, 13(6), 463–468.PubMedGoogle Scholar
  20. Decraemer, W. F., Khanna, S. M., & Funnell, W. R. J. (1991). Malleus vibration mode changes with frequency. Hearing Research, 54(2), 305–318.PubMedGoogle Scholar
  21. Decraemer, W. F., Dirckx, J. J. J., & Funnell, W. R. J. (2003). Three-dimensional modelling of the middle-ear ossicular chain using a commercial high-resolution X-ray CT scanner. Journal of the Association for Research in Otolaryngology, 4(2), 250–263.PubMedCentralPubMedGoogle Scholar
  22. De Mey, J. R., Kessler, P., Dompierre, J., Cordelières, F. P., Dieterlen, A., Vonesch, J.-L., & Sibarita, J.-B. (2008). Fast 4D Microscopy. In Methods in cell biology, Vol. 85: Fluorescent proteins (pp. 83–112). Philadelphia: Elsevier.Google Scholar
  23. Denk, W., & Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biology, 2(11), 1901–1909.Google Scholar
  24. Dirckx, J. J. J., Decraemer, W. F., & Dielis, G. (1988). Phase shift method based on object translation for full field automatic 3-D surface reconstruction from moire topograms. Applied Optics, 27(6), 1164–1169.PubMedGoogle Scholar
  25. Drescher, J., Schmidt, R., & Hardtke, H. J. (1998). Finite-Elemente-Modellierung und Simulation des menschlichen Trommelfells. HNO, 46(2), 129–134.PubMedGoogle Scholar
  26. Egolf, D. P., Nelson, D. K., Howell, H. C., III, & Larson, V. D. (1993). Quantifying ear-canal geometry with multiple computer-assisted tomographic scans. The Journal of the Acoustical Society of America, 93(5), 2809–2819.PubMedGoogle Scholar
  27. Eiber, A., & Kauf, A. (1994). Berechnete Verschiebungen der Mittelohrknochen unter statischer Belastung. HNO, 42(12), 754–759.PubMedGoogle Scholar
  28. Elkhouri, N., Liu, H., & Funnell, W. R. J. (2006). Low-frequency finite-element modeling of the gerbil middle ear. Journal of the Association for Research in Otolaryngology, 7(4), 399–411.PubMedCentralPubMedGoogle Scholar
  29. Erfani, T., & Utyuzhnikov, S. V. (2011). Directed search domain: A method for even generation of the Pareto frontier in multiobjective optimization. Engineering Optimization, 43(5), 467–484.Google Scholar
  30. Esser, M. H. M. (1947). The mechanism of the middle ear: II. The drum. Bulletin of Mathematical Biophysics, 9, 75–91.PubMedGoogle Scholar
  31. Fay, J. (2001). Cat eardrum mechanics. Ph.D. thesis, Stanford University.Google Scholar
  32. Fay, J., Puria, S., Decraemer, W. F., & Steele, C. (2005). Three approaches for estimating the elastic modulus of the tympanic membrane. Journal of Biomechanics, 38(9), 1807–1815.PubMedGoogle Scholar
  33. Fay, J. P., Puria, S., & Steele, C. R. (2006). The discordant eardrum. Proceedings of the National Academy of Sciences of the USA, 103(52), 19743–19748.PubMedCentralPubMedGoogle Scholar
  34. Fercher, A. F. (2010). Optical coherence tomography – development, principles, applications. Zeitschrift für Medizinische Physik, 20(4), 251–276.PubMedGoogle Scholar
  35. Frank, O. (1923). Die Leitung des Schalles im Ohr. Sitzungsberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften zu München, 1923, 11–77.Google Scholar
  36. Funnell, S. M., & Funnell, W. R. J. (1988). An approach to finite-element modelling of the middle ear. In Proceedings of the 14th Canadian Medical & Biological Engineering Conference (pp. 101–102). Montréal, June 28–30.Google Scholar
  37. Funnell, W. R. J. (1981). Image processing applied to the interactive analysis of interferometric fringes. Applied Optics, 20(18), 3245–3250.PubMedGoogle Scholar
  38. Funnell, W. R. J. (1983). On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum. The Journal of the Acoustical Society of America, 73(5), 1657–1661.PubMedGoogle Scholar
  39. Funnell, W. R. J. (1984). On the choice of a cost function for the reconstruction of surfaces by triangulation between contours. Computers and Structures, 18(1), 23–26.Google Scholar
  40. Funnell, W. R. J., & Decraemer, W. F. (1996). On the incorporation of moiré shape measurements in finite-element models of the cat eardrum. The Journal of the Acoustical Society of America, 100(2), 925–932.PubMedGoogle Scholar
  41. Funnell, W. R. J., & Laszlo, C. A. (1974). Dependence of middle-ear parameters on body weight in the guinea pig. The Journal of the Acoustical Society of America, 56(5), 1551–1553.PubMedGoogle Scholar
  42. Funnell, W. R. J., & Laszlo, C. A. (1978). Modeling of the cat eardrum as a thin shell using the finite-element method. The Journal of the Acoustical Society of America, 63(5), 1461–1467.PubMedGoogle Scholar
  43. Funnell, W. R. J., & Laszlo, C. A. (1982). A critical review of experimental observations on ear-drum structure and function. ORL: Journal for Oto-Rhino-Laryngology and Its Related Specialties, 44(4), 181–205.PubMedGoogle Scholar
  44. Funnell, W. R. J., Decraemer, W. F., & Khanna, S. M. (1987). On the damped frequency response of a finite-element model of the cat eardrum. The Journal of the Acoustical Society of America, 81(6), 1851–1859.PubMedGoogle Scholar
  45. Funnell, W. R. J., Khanna, S. M., & Decraemer, W. F. (1992). On the degree of rigidity of the manubrium in a finite-element model of the cat eardrum. The Journal of the Acoustical Society of America, 91(4), 2082–2090.PubMedGoogle Scholar
  46. Funnell, W. R. J., Heng Siah, T., McKee, M. D., Daniel, S. J., & Decraemer, W. F. (2005). On the coupling between the incus and the stapes in the cat. Journal of the Association for Research in Otolaryngology, 6(1), 9–18.PubMedCentralPubMedGoogle Scholar
  47. Funnell, W. R. J., Daniel, S. J., Alsabah, B., & Liu, H. (2006). On the coupling between the incus and the stapes. In Auditory mechanisms: Processes and models, Proceedings of the Ninth International Symposium (pp. 115–116). Portland, OR, July 23–28, 2005.Google Scholar
  48. Funnell, W. R. J., Maftoon, N., & Decraemer, W. F. (2012). Mechanics and modelling for the middle ear. Retrieved from: http://audilab.bme.mcgill.ca/mammie/. (Accessed November 11, 2012).
  49. Gan, R. Z., & Wang, X. (2007). Multifield coupled finite element analysis for sound transmission in otitis media with effusion. The Journal of the Acoustical Society of America, 122(6), 3527–3538.PubMedGoogle Scholar
  50. Gan, R. Z., Feng, B., & Sun, Q. (2004). Three-dimensional finite element modeling of human ear for sound transmission. Annals of Biomedical Engineering, 32(6), 847–859.PubMedGoogle Scholar
  51. Gan, R. Z., Sun, Q., Feng, B., & Wood, M. W. (2006). Acoustic-structural coupled finite element analysis for sound transmission in human ear—Pressure distributions. Medical Engineering & Physics, 28(5), 395–404.Google Scholar
  52. Gan, R. Z., Reeves, B. P., & Wang, X. (2007). Modeling of sound transmission from ear canal to cochlea. Annals of Biomedical Engineering, 35(12), 2180–2195.PubMedGoogle Scholar
  53. Gan, R. Z., Cheng, T., Dai, C., Yang, F., & Wood, M. W. (2009). Finite element modeling of sound transmission with perforations of tympanic membrane. The Journal of the Acoustical Society of America, 126(1), 243–253.PubMedCentralPubMedGoogle Scholar
  54. Gariepy, B. (2011). Finite-element modelling of the newborn ear canal and middle ear. M. Eng. Thesis, McGill University, Montréal.Google Scholar
  55. Gea, S. L. R., Decraemer, W. F., Funnell, W. R. J., Dirckx, J. J. J., & Maier, H. (2009). Tympanic membrane boundary deformations derived from static displacements observed with computerized tomography in human and gerbil. Journal of the Association for Research in Otolaryngology, 11(1), 1–17.PubMedCentralPubMedGoogle Scholar
  56. Gehrmann, S., Höhne, K. H., Linhart, W., Pflesser, B., Pommert, A., Riemer, M., Tiede, U., Windolf, J., Schumacher, U., & Rueger, J. M. (2006). A novel interactive anatomic atlas of the hand. Clinical Anatomy, 19(3), 258–266.PubMedGoogle Scholar
  57. Georgiev, T., Lumsdaine, A., & Chunev, G. (2011). Using focused plenoptic cameras for rich image capture. IEEE Computer Graphics and Applications, 31(1), 62–73.Google Scholar
  58. Goll, E., & Dalhoff, E. (2011). Modeling the eardrum as a string with distributed force. The Journal of the Acoustical Society of America, 130(3), 1452–1462.PubMedGoogle Scholar
  59. Gran, S. (1968). Analytische Grundlage der Mittelohrmechanik. Ein Beitrag zur Anwendung der akustischen Impedanz des Ohres. Ph.D. thesis, Universität Oslo.Google Scholar
  60. Guelke, R., & Keen, J. A. (1949). A study of the vibrations of the tympanic membrane under direct vision, with a new explanation of their physical characteristics. The Journal of Physiology, 110, 226–236.PubMedCentralPubMedGoogle Scholar
  61. Guinan, J. J., & Peake, W. T. (1967). Middle-ear characteristics of anesthetized cats. The Journal of the Acoustical Society of America, 41(5), 1237–1261.PubMedGoogle Scholar
  62. Hagr, A. A., Funnell, W. R. J., Zeitouni, A. G., & Rappaport, J. M. (2004). High-resolution X-ray computed tomographic scanning of the human stapes footplate. The Journal of Otolaryngology, 33(4), 217–221.PubMedGoogle Scholar
  63. Hart, D. P., Frigerio, F., & Marini, D. M. (2010). Three-dimensional imaging using an inflatable membrane. Retrieved from: http://www.google.ca/patents/US20100042002. (Accessed November 11, 2012).
  64. Hartman, W. F. (1971). An error in Helmholtz’s calculation of the displacement of the tympanic membrane. The Journal of the Acoustical Society of America, 49(4B), 1317.Google Scholar
  65. Helmholtz, H. L. F. (1868). Die Mechanik der Gehörknöchelchen und des Trommelfells. Pflügers Archiv für die gesammte Physiologie (Bonn), 1, 1–60.Google Scholar
  66. Helton, J. C., Johnson, J. D., Sallaberry, C. J., & Storlie, C. B. (2006). Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliability Engineering & System Safety, 91(10–11), 1175–1209.Google Scholar
  67. Henson, M., Madden, V., Raskandersen, H., & Henson, O. W., Jr. (2005). Smooth muscle in the annulus fibrosus of the tympanic membrane in bats, rodents, insectivores, and humans. Hearing Research, 200(1–2), 29–37.PubMedGoogle Scholar
  68. Henson, M. M., Henson, O. W., Jr., Gewalt, S. L., Wilson, J. L., & Johnson, G. A. (1994). Imaging the cochlea by magnetic resonance microscopy. Hearing Research, 75(1–2), 75–80.PubMedGoogle Scholar
  69. Homma, K., Shimizu, Y., Kim, N., Du, Y., & Puria, S. (2010). Effects of ear-canal pressurization on middle-ear bone- and air-conduction responses. Hearing Research, 263(1–2), 204–215.PubMedGoogle Scholar
  70. Huang, G. T., Rosowski, J. J., & Peake, W. T. (2000). Relating middle-ear acoustic performance to body size in the cat family: measurements and models. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 186(5), 447–465.PubMedGoogle Scholar
  71. Hudde, H. (1983). Estimation of the area function of human ear canals by sound pressure measurements. The Journal of the Acoustical Society of America, 73(1), 24–31.PubMedGoogle Scholar
  72. Hudde, H., & Schmidt, S. (2009). Sound fields in generally shaped curved ear canals. The Journal of the Acoustical Society of America, 125(5), 3146–3157.PubMedGoogle Scholar
  73. Hudde, H., & Weistenhöfer, C. (1997). A three-dimensional circuit model of the middle ear. Acta Acustica united with Acustica, 83(3), 535–549.Google Scholar
  74. Jackson, R. P., Chlebicki, C., Krasieva, T. B., & Puria, S. (2008). Multiphoton microscopy imaging of collagen fiber layers and orientation in the tympanic membrane. Photonic Therapeutics and Diagnostics IV, Proceedings of SPIE - Int. Soc. Opt. Eng. (Vol. 6842, p. 68421D). San Jose, CA, January 19.Google Scholar
  75. Jang, H. G., Chung, M. S., Shin, D. S., Park, S. K., Cheon, K. S., Park, H. S., & Park, J. S. (2011). Segmentation and surface reconstruction of the detailed ear structures, identified in sectioned images. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 294(4), 559–564.Google Scholar
  76. Johnson, G. A., Thompson, M. B., Gewalt, S. L., & Hayes, C. E. (1986). Nuclear magnetic resonance imaging at microscopic resolution. Journal of Magnetic Resonance, 68(1), 129–137.Google Scholar
  77. Just, T., Lankenau, E., Hüttmann, G., & Pau, H. W. (2009). Optische Kohärenztomographie in der Mittelohrchirurgie. HNO, 57(5), 421–427.PubMedGoogle Scholar
  78. Kanzaki, S., Takada, Y., Niida, S., Takeda, Y., Udagawa, N., Ogawa, K., Nango, N., Momose, A., & Matsuo, K. (2011). Impaired vibration of auditory ossicles in osteopetrotic mice. The American Journal of Pathology, 178(3), 1270–1278.PubMedCentralPubMedGoogle Scholar
  79. Khanna, S. M., & Tonndorf, J. (1972). Tympanic membrane vibrations in cats studied by time-averaged holography. The Journal of the Acoustical Society of America, 51(6B), 1904–1920.PubMedGoogle Scholar
  80. Khanna, S. M., & Stinson, M. R. (1985). Specification of the acoustical input to the ear at high frequencies. The Journal of the Acoustical Society of America, 77(2), 577–589.PubMedGoogle Scholar
  81. Kim, N., Homma, K., & Puria, S. (2011). Inertial bone conduction: Symmetric and anti-symmetric components. Journal of the Association for Research in Otolaryngology, 12(3), 261–279.PubMedCentralPubMedGoogle Scholar
  82. Kirikae, I. (1960). The structure and function of the middle ear. Tokyo: University Press.Google Scholar
  83. Koester, C. J., Khanna, S. M., Rosskothen, H. D., Tackaberry, R. B., & Ulfendahl, M. (1994). Confocal slit divided-aperture microscope: Applications in ear research. Applied Optics, 33(4), 702–708.PubMedGoogle Scholar
  84. Koike, T., Wada, H., & Kobayashi, T. (2002). Modeling of the human middle ear using the finite-element method. The Journal of the Acoustical Society of America, 111(3), 1306–1317.PubMedGoogle Scholar
  85. Kojo, Y. (1954). [Morphological studies of the human tympanic membrane]. Nippon Jibiinkoka Gakkai Kaiho (The Journal of the Oto-Rhino-Laryngological Society of Japan), 57(2), 115–126.Google Scholar
  86. Koning, R. I., & Koster, A. J. (2009). Cryo-electron tomography in biology and medicine. Annals of Anatomy - Anatomischer Anzeiger, 191(5), 427–445.Google Scholar
  87. Kringlebotn, M. (1988). Network model for the human middle ear. Scandinavian Audiology, 17(2), 75–85.PubMedGoogle Scholar
  88. Kuypers, L. C., Decraemer, W. F., Dirckx, J. J. J., & Timmermans, J.-P. (2005a). Thickness distribution of fresh eardrums of cat obtained with confocal microscopy. Journal of the Association for Research in Otolaryngology, 6(3), 223–233.PubMedCentralPubMedGoogle Scholar
  89. Kuypers, L. C., Dirckx, J. J. J., Decraemer, W. F., & Timmermans, J.-P. (2005b). Thickness of the gerbil tympanic membrane measured with confocal microscopy. Hearing Research, 209(1–2), 42–52.PubMedGoogle Scholar
  90. Kuypers, L. C., Decraemer, W. F., & Dirckx, J. J. J. (2006). Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy. Otology & Neurotology, 27(2), 256–264.Google Scholar
  91. Ladak, H. M., Decraemer, W. F., Dirckx, J. J. J., & Funnell, W. R. J. (2004). Response of the cat eardrum to static pressures: Mobile versus immobile malleus. The Journal of the Acoustical Society of America, 116(5), 3008–3021.PubMedGoogle Scholar
  92. Ladak, H. M., Funnell, W. R. J., Decraemer, W. F., & Dirckx, J. J. J. (2006). A geometrically nonlinear finite-element model of the cat eardrum. The Journal of the Acoustical Society of America, 119(5 Pt 1), 2859–2868.PubMedGoogle Scholar
  93. Leach, R. (2010). Fundamental principles of engineering nanometrology. Oxford: Elsevier.Google Scholar
  94. Lee, C.-F., Chen, P.-R., Lee, W.-J., Chen, J.-H., & Liu, T.-C. (2006). Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis. The Laryngoscope, 116(5), 711–716.PubMedGoogle Scholar
  95. Lee, W.-J., Lee, C.-F., Chen, S.-Y., Chen, Y.-S., & Sun, C.-K. (2010). Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy. Journal of Biomedical Optics, 15(4), 046012.PubMedGoogle Scholar
  96. Liang, J., McInerney, T., & Terzopoulos, D. (2006). United snakes. Medical Image Analysis, 10(2), 215–233.PubMedGoogle Scholar
  97. Lim, D. J. (1995). Structure and function of the tympanic membrane: A review. Acta Oto-Rhino-Laryngologica Belgica, 49(2), 101–115.PubMedGoogle Scholar
  98. Lowell, P. (1908). Mars as the abode of life. New York: Macmillan Co.Google Scholar
  99. Luo, H., Dai, C., Gan, R. Z., & Lu, H. (2009). Measurement of Young’s modulus of human tympanic membrane at high strain rates. Journal of Biomechanical Engineering, 131(6), 064501.PubMedGoogle Scholar
  100. Lynch, T. J., III, Nedzelnitsky, V., & Peake, W. T. (1982). Input impedance of the cochlea in cat. The Journal of the Acoustical Society of America, 72(1), 108–130.PubMedGoogle Scholar
  101. Maftoon, N., Nambiar, S., Funnell, W. R. J., Decraemer, W. F., & Daniel, S. J. (2011). Experimental and modelling study of gerbil tympanic-membrane vibrations. In 34th Midwinter Research Meeting, Association for Research in Otolaryngology Baltimore, February 19–23.Google Scholar
  102. Margolis, R. H., Osguthorpe, J. D., & Popelka, G. R. (1978). The effects of experimentally-produced middle ear lesions on tympanometry in cats. Acta Oto-Laryngologica, 86(5–6), 428–436.PubMedGoogle Scholar
  103. Marwala, T. (2010). Finite-element-model updating using computional intelligence techniques. London: Springer.Google Scholar
  104. Mayes, R. L. (2009). Developing adequacy criterion for model validation based on requirements. Proceedings of the IMAC-XXVII. Orlando, FL, February 8–12.Google Scholar
  105. Moens, D., & Vandepitte, D. (2005). A survey of non-probabilistic uncertainty treatment in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 194(12–16), 1527–1555.Google Scholar
  106. Møller, A. R. (1961). Network model of the middle ear. The Journal of the Acoustical Society of America, 33(2), 168–176.Google Scholar
  107. Møller, A. R. (1965). An experimental study of the acoustic impedance of the middle ear and its transmission properties. Acta Oto-Laryngologica, 60(1–6), 129–149.PubMedGoogle Scholar
  108. Neudert, M., Beleites, T., Ney, M., Kluge, A., Lasurashvili, N., Bornitz, M., Scharnweber, D., & Zahnert, T. (2010). Osseointegration of titanium prostheses on the stapes footplate. Journal of the Association for Research in Otolaryngology, 11(2), 161–171.PubMedCentralPubMedGoogle Scholar
  109. Novotny, L. (2011). From near-field optics to optical antennas. Physics Today, 64(7), 47–52.Google Scholar
  110. O’Connor, K. N., & Puria, S. (2008). Middle-ear circuit model parameters based on a population of human ears. The Journal of the Acoustical Society of America, 123(1), 197–211.PubMedGoogle Scholar
  111. Odgaard, A., Andersen, K., Ullerup, R., Frich, L. H., & Melsen, F. (1994). Three-dimensional reconstruction of entire vertebral bodies. Bone, 15(3), 335–342.PubMedGoogle Scholar
  112. Olson, E. S. (1998). Observing middle and inner ear mechanics with novel intracochlear pressure sensors. The Journal of the Acoustical Society of America, 103(6), 3445–3463.PubMedGoogle Scholar
  113. Onchi, Y. (1949). A study of the mechanism of the middle ear. The Journal of the Acoustical Society of America, 21(4), 404–410.Google Scholar
  114. Onchi, Y. (1961). Mechanism of the middle ear. The Journal of the Acoustical Society of America, 33(6), 794–805.Google Scholar
  115. Palva, T., Northrop, C., & Ramsay, H. (2001). Aeration and drainage pathways of Prussak’s space. International Journal of Pediatric Otorhinolaryngology, 57(1), 55–65.PubMedGoogle Scholar
  116. Pang, X. D., & Peake, W. T. (1986). How do contractions of the stapedius muscle alter the acoustic properties of the ear? In Peripheral Auditory Mechanisms (pp. 36–43). Berlin: Springer-Verlag.Google Scholar
  117. Parent, P., & Allen, J. B. (2007). Wave model of the cat tympanic membrane. The Journal of the Acoustical Society of America, 122(2), 918–931.PubMedGoogle Scholar
  118. Parent, P., & Allen, J. B. (2010). Time-domain “wave” model of the human tympanic membrane. Hearing Research, 263(1–2), 152–167.PubMedGoogle Scholar
  119. Parker, W. S. (2008). Franklin, Holmes, and the epistemology of computer simulation. International Studies in the Philosophy of Science, 22(2), 165–183.Google Scholar
  120. Pascal, J., Bourgeade, A., Lagier, M., & Legros, C. (1998). Linear and nonlinear model of the human middle ear. The Journal of the Acoustical Society of America, 104(3 Pt 1), 1509–1516.PubMedGoogle Scholar
  121. Peake, W. T., & Guinan, J. J. (1967). Circuit model for the cat’s middle ear. Quarterly Progress Report No. 84 (pp. 320–326). Cambridge, MA: Research Laboratory of Electronics, Massachusetts Institute of Technology.Google Scholar
  122. Polys, N. F., Brutzman, D., Steed, A., & Behr, J. (2008). Future standards for immersive VR. IEEE Computer Graphics and Applications, 28(2), 94–99.PubMedGoogle Scholar
  123. Price, G. R., & Kalb, J. T. (1991). Insights into hazard from intense impulses from a mathematical model of the ear. The Journal of the Acoustical Society of America, 90(1), 219–227.PubMedGoogle Scholar
  124. Puria, S. (1991). A theory of cochlear input impedance and middle ear parameter estimation. Ph.D. thesis, City University New York.Google Scholar
  125. Puria, S., & Allen, J. B. (1998). Measurements and model of the cat middle ear: Evidence of tympanic membrane acoustic delay. The Journal of the Acoustical Society of America, 104(6), 3463–3481.PubMedGoogle Scholar
  126. Puria, S., & Steele, C. (2010). Tympanic-membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals. Hearing Research, 263(1–2), 183–190.PubMedGoogle Scholar
  127. Qi, L., Liu, H., Lutfy, J., Funnell, W. R. J., & Daniel, S. J. (2006). A nonlinear finite-element model of the newborn ear canal. The Journal of the Acoustical Society of America, 120(6), 3789–3798.PubMedCentralPubMedGoogle Scholar
  128. Rabbitt, R. D., & Holmes, M. H. (1986). A fibrous dynamic continuum model of the tympanic membrane. The Journal of the Acoustical Society of America, 80(6), 1716–1728.PubMedGoogle Scholar
  129. Rabbitt, R. D., & Holmes, M. H. (1988). Three-dimensional acoustic waves in the ear canal and their interaction with the tympanic membrane. The Journal of the Acoustical Society of America, 83(3), 1064–1080.PubMedGoogle Scholar
  130. Reiser, M. F., Semmler, W., & Hricak, H. (Eds.). (2008). Magnetic resonance tomography. Berlin: Springer.Google Scholar
  131. Roache, P. J. (2002). Code verification by the method of manufactured solutions. Journal of Fluids Engineering, Transactions of the ASME, 124(1), 4–10.Google Scholar
  132. Salih, W. H. M., Buytaert, J. A. N., Aerts, J. R. M., Vanderniepen, P., Dierick, M., & Dirckx, J. J. J. (2012). Open access high-resolution 3D morphology models of cat, gerbil, rabbit, rat and human ossicular chains. Hearing Research, 284(1–2), 1–5.PubMedGoogle Scholar
  133. Sasov, A., & Van Dyck, D. (1998). Desktop X-ray microscopy and microtomography. Journal of Microscopy, 191(2), 151–158.Google Scholar
  134. Schmidt, S. H., & Hellström, S. (1991). Tympanic-membrane structure—new views. A comparative study. ORL: Journal for Oto-Rhino-Laryngology and Its Related Specialties, 53(1), 32–36.PubMedGoogle Scholar
  135. Schroeder, W., Martin, K. W., & Lorensen, B. (1996). The Visualization Toolkit: An object-oriented approach to 3-D graphics. Upper Saddle River, NJ: Prentice Hall PTR.Google Scholar
  136. Schwer, L. E. (2007). An overview of the PTC 60/V&V 10: Guide for verification and validation in computational solid mechanics. Engineering with Computers, 23(4), 245–252.Google Scholar
  137. Shaw, E. A. G., & Stinson, M. R. (1983). The human external and middle ear: Models and concepts. Mechanics of Hearing (pp. 3–10). Delft: M. Nijhoff (The Hague) & Delft University Press.Google Scholar
  138. Shaw, E. A. G., & Stinson, M. R. (1986). Eardrum dynamics, middle ear transmission and the human hearing threshold curve. In Proceedings of the 12th International Congress on Acoustics (pp. B6–6), Toronto, July 24–31.Google Scholar
  139. Shera, C. A., & Zweig, G. (1991). Phenomenological characterization of eardrum transduction. The Journal of the Acoustical Society of America, 90(1), 253–262.PubMedGoogle Scholar
  140. Shera, C. A., & Zweig, G. (1992a). Middle-ear phenomenology: The view from the three windows. The Journal of the Acoustical Society of America, 92(3), 1356–1370.PubMedGoogle Scholar
  141. Shera, C. A., & Zweig, G. (1992b). Analyzing reverse middle-ear transmission: Noninvasive Gedankenexperiments. The Journal of the Acoustical Society of America, 92(3), 1371–1381.PubMedGoogle Scholar
  142. Sim, J. H., & Puria, S. (2008). Soft tissue morphometry of the malleus-incus complex from micro-CT imaging. Journal of the Association for Research in Otolaryngology, 9, 5–21.PubMedCentralPubMedGoogle Scholar
  143. Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from Internet photo collections. International Journal of Computer Vision, 80(2), 189–210.Google Scholar
  144. Soons, J. A. M., Aernouts, J., & Dirckx, J. J. J. (2010). Elasticity modulus of rabbit middle ear ossicles determined by a novel micro-indentation technique. Hearing Research, 263(1-2), 33–37.PubMedGoogle Scholar
  145. Sørensen, M. S., Dobrzeniecki, A. B., Larsen, P., Frisch, T., Sporring, J., & Darvann, T. A. (2002). The Visible Ear: A digital image library of the temporal bone. ORL: Journal for Oto-Rhino-Laryngology and Its Related Specialties, 64(6), 378–381.PubMedGoogle Scholar
  146. Stepp, C. E., & Voss, S. E. (2005). Acoustics of the human middle-ear air space. The Journal of the Acoustical Society of America, 118(2), 816–871.Google Scholar
  147. Stinson, M. R., & Khanna, S. M. (1989). Sound propagation in the ear canal and coupling to the eardrum, with measurements on model systems. The Journal of the Acoustical Society of America, 85(6), 2481–2491.PubMedGoogle Scholar
  148. Stinson, M. R., & Lawton, B. W. (1989). Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution. The Journal of the Acoustical Society of America, 85(6), 2492–2503.PubMedGoogle Scholar
  149. Stinson, M. R., & Daigle, G. A. (2005). Comparison of an analytic horn equation approach and a boundary element method for the calculation of sound fields in the human ear canal. The Journal of the Acoustical Society of America, 118(4), 2405–2411.PubMedGoogle Scholar
  150. Stuhmiller, J. H. (1989). Use of modeling in predicting tympanic membrane rupture. The Annals of Otology, Rhinology & Laryngology. Supplement, 140, 53–60.Google Scholar
  151. Subhash, H. M., Nguyen-Huynh, A., Wang, R. K., Jacques, S. L., Choudhury, N., & Nuttall, A. L. (2012). Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry. Journal of Biomedical Optics, 17(6), 060505.PubMedCentralPubMedGoogle Scholar
  152. Sun, C.-K. (2005). Higher harmonic generation microscopy. Advances in Biochemical Engineering/Biotechnology, 95, 17–56.PubMedGoogle Scholar
  153. Sun, Q., Chang, K.-H., Dormer, K. J., Dyer, R. K., Jr., & Gan, R. Z. (2002a). An advanced computer-aided geometric modeling and fabrication method for human middle ear. Medical Engineering & Physics, 24(9), 595–606.Google Scholar
  154. Sun, Q., Gan, R. Z., Chang, K.-H., & Dormer, K. J. (2002b). Computer-integrated finite element modeling of human middle ear. Biomechanics and Modeling in Mechanobiology, 1(2), 109–122.PubMedGoogle Scholar
  155. Teoh, S. W. (1996). The roles of pars flaccida in middle ear acoustic transmission. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  156. Teoh, S. W., Flandermeyer, D. T., & Rosowski, J. J. (1997). Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: Acoustic and anatomical measurements. Hearing Research, 106(1–2), 39–65.PubMedGoogle Scholar
  157. Todd, N. W. (2005). Orientation of the manubrium mallei: inexplicably widely variable. The Laryngoscope, 115(9), 1548–1552.PubMedGoogle Scholar
  158. Tuck-Lee, J. P., Pinsky, P. M., Steele, C. R., & Puria, S. (2008). Finite element modeling of acousto-mechanical coupling in the cat middle ear. The Journal of the Acoustical Society of America, 124(1), 348–362.PubMedCentralPubMedGoogle Scholar
  159. Uebo, K., Kodama, A., Oka, Y., & Ishii, T. (1988). [Thickness of normal human tympanic membrane]. Ear Research Japan, 19, 70–73.Google Scholar
  160. Van Wijhe, R., Funnell, W. R. J., Henson, O. W., & Henson, M. M. (2000). Development of a finite-element model of the middle ear of the moustached bat. In Proceedings of the 26th Annual Conference of the Canadian Medical and Biological Engineering Society (pp. 20–21). Halifax, October 26–28.Google Scholar
  161. Vogel, U. (1999). New approach for 3D imaging and geometry modeling of the human inner ear. ORL: Journal for Oto-Rhino-Laryngology and Its Related Specialties, 61(5), 259–267.PubMedGoogle Scholar
  162. Vogel, U., & Schmitt, T. (1998). 3D visualization of middle ear structures. Medical Imaging 1998: Image Display, Proceedings SPIE (Vol. 3335, pp. 141–151). San Diego, February 21.Google Scholar
  163. Voie, A. H., Burns, D. H., & Spelman, F. A. (1993). Orthogonal-plane fluorescence optical sectioning: Three-dimensional imaging of macroscopic biological specimens. Journal of Microscopy, 170, 229–236.PubMedGoogle Scholar
  164. Volandri, G., Di Puccio, F., Forte, P., & Carmignani, C. (2011). Biomechanics of the tympanic membrane. Journal of Biomechanics, 44(7), 1219–1236.PubMedGoogle Scholar
  165. von Ahn, L., Maurer, B., McMillen, C., Abraham, D., & Blum, M. (2008). reCAPTCHA: Human-based character recognition via Web security measures. Science, 321(5895), 1465–1468.Google Scholar
  166. von Békésy, G. (1941). Über die Messung der Schwingungsamplitude der Gehörknöchelchen mittels einer kapazitiven Sonde. Akustische Zeitschrift, 6, 1–16.Google Scholar
  167. von Békésy, G. (1949). The structure of the middle ear and the hearing of one’s own voice by bone conduction. The Journal of the Acoustical Society of America, 21, 217–232.Google Scholar
  168. von Békésy, G. (1960). Experiments in Hearing. New York, NY: McGraw-Hill.Google Scholar
  169. von Unge, M., Bagger-Sjöbäck, D., & Borg, E. (1991). Mechanoacoustic properties of the tympanic membrane: A study on isolated Mongolian gerbil temporal bones. The American Journal of Otology, 12(6), 407–419.Google Scholar
  170. Wada, H., & Kobayashi, T. (1990). Dynamical behavior of middle ear: Theoretical study corresponding to measurement results obtained by a newly developed measuring apparatus. The Journal of the Acoustical Society of America, 87(1), 237–245.PubMedGoogle Scholar
  171. Wada, H., Metoki, T., & Kobayashi, T. (1992). Analysis of dynamic behavior of human middle ear using a finite-element method. The Journal of the Acoustical Society of America, 92(6), 3157–3168.PubMedGoogle Scholar
  172. Wada, H., Onda, N., Date, K., & Kobayashi, T. (1996). Assessment of mechanical properties of tympanic membrane by supersonic wave method. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 62(598), 2289–2292.Google Scholar
  173. Wang, H., Northrop, C., Burgess, B., Liberman, M. C., & Merchant, S. N. (2006). Three-dimensional virtual model of the human temporal bone: A stand-alone, downloadable teaching tool. Otology & Neurotology, 27(4), 452–457.Google Scholar
  174. Wang, X., Cheng, T., & Gan, R. Z. (2007). Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear. The Journal of the Acoustical Society of America, 122(2), 906–917.PubMedGoogle Scholar
  175. Webber, R. L., Webber, S. E., & Moore, J. (2002). Hand-held three-dimensional dental X-ray system: Technical description and preliminary results. Dentomaxillofacial Radiology, 31(4), 240–248.PubMedGoogle Scholar
  176. Weistenhöfer, C., & Hudde, H. (1999). Determination of the shape and inertia properties of the human auditory ossicles. Audiology & Neuro-Otology, 4(3–4), 192–196.Google Scholar
  177. Wever, E. G., & Lawrence, M. (1954). Physiological acoustics. Princeton, NJ: Princeton University Press.Google Scholar
  178. Wiener, F. M., & Ross, D. A. (1946). The pressure distribution in the auditory canal in a progressive sound field. The Journal of the Acoustical Society of America, 18(2), 401–408.Google Scholar
  179. Williams, K. R., & Lesser, T. H. (1990). A finite element analysis of the natural frequencies of vibration of the human tympanic membrane. Part I. British Journal of Audiology, 24(5), 319–327.PubMedGoogle Scholar
  180. Williams, K. R., Blayney, A. W., & Rice, H. J. (1996). Development of a finite element model of the middle ear. Revue De Laryngologie - Otologie - Rhinologie, 117(3), 259–264.PubMedGoogle Scholar
  181. Wilson, J. L., Henson, M. M., Gewalt, S. L., Keating, A. W., & Henson, O. W., Jr. (1996). Reconstructions and cross-sectional area measurements from magnetic resonance microscopic images of the cochlea. American Journal of Otology, 17(2), 347–353.PubMedGoogle Scholar
  182. Winsberg, E. (2010). Science in the age of computer simulation. Chicago: University of Chicago Press.Google Scholar
  183. Wojtkowski, M. (2010). High-speed optical coherence tomography: Basics and applications. Applied Optics, 49(16), D30–61.PubMedGoogle Scholar
  184. Yoo, S. H., Park, K. H., Moon, S. K., Kim, W.-S., & Bae, J. H. (2004). Evaluation of dynamic behavior of the human middle ear with nonhomogeneity by finite element method. Key Engineering Materials, 270273, 2067–2072.Google Scholar
  185. Young, P. G., Beresford-West, T. B. H., Coward, S. R. L., Notarberardino, B., Walker, B., & Abdul-Aziz, A. (2008). An efficient approach to converting three-dimensional image data into highly accurate computational models. Philosophical Transactions A: Mathematical, Physical, and Engineering Sciences, 366(1878), 3155–3173.Google Scholar
  186. Yuan, Y., & Verma, R. (2006). Measuring microelastic properties of stratum corneum. Colloids and Surfaces B: Biointerfaces, 48(1), 6–12.PubMedGoogle Scholar
  187. Zebian, M., Hensel, J., & Fedtke, T. (2012). How the cross-sectional discontinuity between ear canal and probe affects the ear canal length estimation. The Journal of the Acoustical Society of America, 132(1), EL8–EL14.PubMedGoogle Scholar
  188. Zhang, X., & Gan, R. Z. (2010). Dynamic properties of human tympanic membrane – experimental measurement and modelling analysis. International Journal of Experimental and Computational Biomechanics, 1(3), 252–270.Google Scholar
  189. Zhang, X., & Gan, R. Z. (2011). A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Transactions on Biomedical Engineering, 58(10), 3024–3027.PubMedGoogle Scholar
  190. Zhang, Y.-J. (2006). Advances in image and video segmentation. Hershey, PA: IRM Press.Google Scholar
  191. Zwislocki, J. (1957). Some impedance measurements on normal and pathological ears. The Journal of the Acoustical Society of America, 29(12), 1312–1317.Google Scholar
  192. Zwislocki, J. (1962). Analysis of the middle-ear function. Part I: Input impedance. The Journal of the Acoustical Society of America, 34(9B), 1514–1523.Google Scholar
  193. Zwislocki, J. (1963). Analysis of the middle-ear function. Part II: Guinea-pig ear. The Journal of the Acoustical Society of America, 35(7), 1034–1040.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • W. Robert J. Funnell
    • 1
    Email author
  • Nima Maftoon
    • 2
  • Willem F. Decraemer
    • 3
  1. 1.Departments of BioMedical Engineering and Otolaryngology – Head & Neck SurgeryMcGill UniversityMontréalCanada
  2. 2.Department of BioMedical EngineeringMcGill UniversityMontréalCanada
  3. 3.Laboratory of BioMedical PhysicsUniversity of AntwerpAntwerpBelgium

Personalised recommendations