Finite Element Model Updating Using the Shadow Hybrid Monte Carlo Technique

  • I. BoulkaibetEmail author
  • L. Mthembu
  • T. Marwala
  • M. I. Friswell
  • S. Adhikari
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


Recent research in the field of Finite Element Model (FEM) updating has advocated the benefits of adopting Bayesian analysis techniques. These techniques are well suited to dealing with the uncertainties associated with complex systems. However, Bayesian formulations require the evaluation of the Posterior Distribution Function (pdf) which may not be available in analytical form. This is the case in FEM updating. In such cases sampling methods can provide good approximations of the Posterior distribution when implemented in the Bayesian context. In this paper, we propose the use of the Shadow Hybrid Monte Carlo (SHMC) technique for the problem of determining the most probable FEM updating parameters for the given data. SHMC is based on Hybrid Monte Carlo (HMC) and designed to improve sampling by allowing for larger system sizes and time steps. The accuracy and efficiency of this sampling method is tested on the updating of a structural beam models.


Bayesian Sampling Finite Element Model updating Markov Chain Monte Carlo Hybrid Monte Carlo method Shadow Hybrid Monte Carlo 


  1. 1.
    Onãte E (2009) Structural analysis with the finite element method. Linear statics, vol 1, Basis and solids. Springer, LondonzbMATHCrossRefGoogle Scholar
  2. 2.
    Rao SS (2004) The finite element method in engineering, 4th edn. Elsevier Butterworth Heinemann, BurlingtonGoogle Scholar
  3. 3.
    Friswell MI, Mottershead JE (1995) Finite element model updating in structural dynamics. Kluwer, Academic, BostonzbMATHCrossRefGoogle Scholar
  4. 4.
    Marwala T (2010) Finite element model updating using computational intelligence techniques. Springer, LondonzbMATHCrossRefGoogle Scholar
  5. 5.
    Yuen KV (2010) Bayesian methods for structural dynamics and civil engineering. Wiley, New YorkCrossRefGoogle Scholar
  6. 6.
    Cheung SH, Beck JL (2009) Bayesian model updating using Hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters. J Eng Mech 135(4):243–255CrossRefGoogle Scholar
  7. 7.
    Boulkaibet I, Marwala T, Mthembu L, Friswell MI, Adhikari S (2012) Sampling techniques in Bayesian finite element model updating. Proc Soc Exp Mech 29:75–83CrossRefGoogle Scholar
  8. 8.
    Izaguirre JA, Hampton SS, Comput J (2004) Shadow Hybrid Monte Carlo: an efficient propagator in phase space of macromolecules. J Comput Phys 200:581–604zbMATHCrossRefGoogle Scholar
  9. 9.
    Skeel RD, Hardy DJ (2001) Practical construction of modified Hamiltonians. SIAM J Sci Comput 23(4):1172–1188MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Engle RD, Skeel RD, Drees M (2005) Monitoring energy drift with shadow Hamiltonians. J Comput Phys 206:432–452MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ewins DJ (1984) Modal testing: theory and practice. Research Studies, LetchworthGoogle Scholar
  12. 12.
    Bishop CM (2006) Pattern recognition and machine learning. Springer, New YorkzbMATHGoogle Scholar
  13. 13.
    Marwala T, Sibisi S (2005) Finite element model updating using Bayesian approach. In: Proceedings of the international modal analysis conference, Orlando, ISBN: 0-912053-89-5Google Scholar
  14. 14.
    Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, OxfordGoogle Scholar
  15. 15.
    Vapnik VN (1995) The nature of statistical learning theory. Springer, New YorkzbMATHCrossRefGoogle Scholar
  16. 16.
    Ching J, Leu SS (2009) Bayesian updating of reliability of civil infrastructure facilities based on condition-state data and fault-tree model. Reliab Eng Syst Saf 94(12):1962–1974CrossRefGoogle Scholar
  17. 17.
    Neal RM (2000) Slice sampling, technical report, no. 2005, Department of Statistics, University of TorontoGoogle Scholar
  18. 18.
    Hanson KM (2001) Markov Chain Monte Carlo posterior sampling with the Hamiltonian method. Proc SPIE 4322:456–467CrossRefGoogle Scholar
  19. 19.
    Creutz M (1988) Global Monte Carlo algorithms for many-fermion systems. Phys Rev D 38:1228–1238CrossRefGoogle Scholar
  20. 20.
    Kennedy AD, Pendleton B (1991) Acceptances and autocorrelations in hybrid Monte Carlo. Nucl Phys B Proc Suppl 20:118–121CrossRefGoogle Scholar
  21. 21.
    Kraaij CS (2007) Model updating of a ‘clamped’-free beam system using FEMTOOLS. Technische Universiteit Eindhoven, Eindhoven, NetherlandsGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2013

Authors and Affiliations

  • I. Boulkaibet
    • 1
    Email author
  • L. Mthembu
    • 1
  • T. Marwala
    • 1
  • M. I. Friswell
    • 2
  • S. Adhikari
    • 2
  1. 1.The Centre For Intelligent System Modelling (CISM), Electrical and Electronics Engineering DepartmentUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.College of EngineeringSwansea UniversitySwanseaUK

Personalised recommendations