Fourier–Mukai Partners and Polarised \(\mathop{\mathrm{K3}}\nolimits\) Surfaces

  • K. HulekEmail author
  • D. Ploog
Part of the Fields Institute Communications book series (FIC, volume 67)


The purpose of this note is twofold. We first review the theory of Fourier–Mukai partners together with the relevant part of Nikulin’s theory of lattice embeddings via discriminants. Then we consider Fourier–Mukai partners of \(\mathop{\mathrm{K3}}\nolimits\) surfaces in the presence of polarisations, in which case we prove a counting formula for the number of partners.

Key words

K3 surfaces Fourier–Mukai partners Torelli theorem Lattice embeddings 

Mathematics Subject Classifications

Primary 14J28 Secondary 11E12 18E30 



 We thank F. Schulze for discussions concerning lattice theory. We are grateful to M. Schütt and to the referee who improved the article considerably. The first author would like to thank the organisers of the Fields Institute Workshop on Arithmetic and Geometry of \(\mathop{\mathrm{K3}}\nolimits\) surfaces and Calabi–Yau threefolds held in August 2011 for a very interesting and stimulating meeting. The second author has been supported by DFG grant Hu 337/6-1 and by the DFG priority programme 1388 “representation theory”.


  1. 1.
    W.L. Baily Jr., A. Borel, Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math. (2) 84, 442–528 (1966)Google Scholar
  2. 2.
    W. Barth, K. Hulek, C. Peters, A. Van de Ven, Compact Complex Surfaces, 2nd edn. (Springer, Berlin, 2004)zbMATHGoogle Scholar
  3. 3.
    C. Bartocci, U. Bruzzo, D. Hernàndez-Ruipérez, Fourier–Mukai and Nahm Transforms in Geometry and Mathematical Physics (Birkhäuser, Basel, 2009)zbMATHCrossRefGoogle Scholar
  4. 4.
    A.I. Beauville, J.-P. Bourguignon, M. Demazure (eds.), Géométrie des surfaces K3: modules et périodes, in Séminaires Palaiseau. Astérisque, vol. 126. Société Mathématique de France (Paris 1985)Google Scholar
  5. 5.
    A. Beilinson, J. Bernstein, P. Deligne, Faisceaux perverse, in Astérisque, vol. 100 Société Mathématique de France (Paris 1980)Google Scholar
  6. 6.
    A.I. Bondal, D.O. Orlov, Semiorthogonal decompositions for algebraic varieties. MPI preprint 15 (1995), also math.AG/9506012 Google Scholar
  7. 7.
    A.I. Bondal, D.O. Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences. Compos. Math. 125, 327–344 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    T. Bridgeland, A. Maciocia, Complex surfaces with equivalent derived categories. Math. Z. 236, 677–697 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    T. Bridgeland, Flops and derived categories. Invent. Math. 147, 613–632 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    T. Bridgeland, Spaces of stability conditions, in Algebraic Geometry, Seattle, 2005. Proceedings of Symposia in Pure Mathematics, vol. 80, Part 1 (American Mathematical Society, Providence, 2009), pp. 1–21Google Scholar
  11. 11.
    J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices, and Groups, 2nd edn. (Springer, Berlin, 1993)zbMATHCrossRefGoogle Scholar
  12. 12.
    D.A. Cox, Primes of the Form \({x}^{2} + n{y}^{2}\) (Wiley, New York, 1989)Google Scholar
  13. 13.
    M. Eichler, Quadratische Formen und Orthogonale Gruppen (Springer, Berlin, 1952)zbMATHCrossRefGoogle Scholar
  14. 14.
    W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 3 (Springer, Berlin, 1998)CrossRefGoogle Scholar
  15. 15.
    P. Gabriel, Des catégories abéliennes. Bull. Soc. Math. Fr. 90, 323–448 (1962)MathSciNetzbMATHGoogle Scholar
  16. 16.
    S.I. Gelfand, Y.I. Manin, Methods of Homological Algebra (Springer, Berlin, 1997)Google Scholar
  17. 17.
    V. Golyshev, V. Lunts, D.O. Orlov, Mirror symmetry for abelian varieties. J. Algebr. Geom. 10, 433–496 (2001)MathSciNetzbMATHGoogle Scholar
  18. 18.
    V.A. Gritsenko, K. Hulek, G.K. Sankaran, The Kodaira dimension of the moduli of K3 surfaces. Invent. Math. 169, 519–567 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    D. Happel, in Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. LMS Lecture Notes Series, vol. 119 (Cambridge University Press, Cambridge, 1988)Google Scholar
  20. 20.
    H. Hartmann, Cusps of the Kähler moduli space and stability conditions on K3 surfaces Math. Ann. doi:10.1007/s00208-011-0719-3 Math. Ann. 354, 1–42 (2012)Google Scholar
  21. 21.
    R. Hartshorne, in Residues and Duality. Lecture Notes in Mathematics, vol. 20 (Springer, Berlin, 1966)Google Scholar
  22. 22.
    S. Hosono, B.H. Lian, K. Oguiso, S.-T. Yau, Fourier–Mukai number of a K3 surface, in Algebraic Structures and Moduli Spaces. CRM Proceedings and Lecture Notes, vol. 38 (AMS Providence, 2004), pp. 177–192Google Scholar
  23. 23.
    D. Huybrechts, Fourier–Mukai Transforms in Algebraic Geometry (Oxford University Press, Oxford, 2006)zbMATHCrossRefGoogle Scholar
  24. 24.
    B.W. Jones, in The Arithmetic Theory of Quadratic Forms. Carus Mathemathical Monographs, vol. 10 (Mathematical Association of America, Buffalo, New York 1950)Google Scholar
  25. 25.
    Y. Kawamata, D-equivalence and K-equivalence. J. Differ. Geom. 61, 147–171 (2002)MathSciNetzbMATHGoogle Scholar
  26. 26.
    S. Ma, Fourier–Mukai partners of a K3 surface and the cusps of its Kahler moduli. Int. J. Math. 20, 727–750 (2009)zbMATHCrossRefGoogle Scholar
  27. 27.
    D.R. Morrison, On K3 surfaces with large Picard number. Invent. Math. 75, 105–121 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    D.R. Morrison, in The Geometry of K3 Surfaces. Lecture Notes, Cortona, Italy, 1988.
  29. 29.
    S. Mukai, Duality between D(X) and \(D(\hat{X})\) with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)MathSciNetzbMATHGoogle Scholar
  30. 30.
    S. Mukai, On the moduli space of bundles on K3 surfaces I, in Vector Bundles on Algebraic Varieties, vol. 11 (The Tata Institute of Fundamental Research in Mathematics, Bombay, 1984), pp. 341–413Google Scholar
  31. 31.
    Y. Namikawa, Mukai flops and derived categories. J. Reine Angew. Math. 560, 65–76 (2003)MathSciNetzbMATHGoogle Scholar
  32. 32.
    V. Nikulin, Integral symmetric bilinear forms and some of their applications. Math. USSR Izv. 14, 103–167 (1980)zbMATHCrossRefGoogle Scholar
  33. 33.
    K. Oguiso, K3 surfaces via almost-primes. Math. Res. Lett. 9, 47–63 (2002)MathSciNetzbMATHGoogle Scholar
  34. 34.
    D.O. Orlov, Equivalences of derived categories and K3-surfaces. J. Math. Sci. 84, 1361–1381 (1997)zbMATHCrossRefGoogle Scholar
  35. 35.
    D.O. Orlov, Derived categories of coherent sheaves on abelian varieties and equivalences between them. Izv. Math. 66, 569–594 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    D.O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models. Trudy Steklov Math. Inst. 204, 240–262 (2004)Google Scholar
  37. 37.
    D. Ploog, Equivariant equivalences for finite group actions. Adv. Math. 216, 62–74 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    A. Polishchuk, Symplectic biextensions and generalizations of the Fourier–Mukai transforms. Math. Res. Lett. 3, 813–828 (1996)MathSciNetzbMATHGoogle Scholar
  39. 39.
    A. Rudakov et al., Helices and Vector Bundles. London Mathematical Society Lecture Note Series, vol. 148 (1990)Google Scholar
  40. 40.
    B. Saint-Donat, Projective models of K-3 surfaces. Am. J. Math. 96, 602–639 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    C.L. Siegel, Equivalence of quadratic forms. Am. J. Math. 63, 658–680 (1941)CrossRefGoogle Scholar
  42. 42.
    P. Stellari, Some remarks about the FM-partners of K3 surfaces with small Picard numbers 1 and 2. Geom. Dedicata 108, 1–13 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    P. Stellari, A finite group acting on the moduli space of K3 surfaces. Trans. Am. Math. Soc. 360, 6631–6642 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    H. Sterk, Finiteness results for algebraic K3 surfaces. Math. Z. 189, 507–513 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    J.-L. Verdier, Des catégories dérivées des catégories abéliennes, Ph.D. thesis, 1967; Asterisque, vol. 239, 1996Google Scholar
  46. 46.
    G.L. Watson, Integral Quadratic Forms (Cambridge University Press, Cambridge, 1960)zbMATHGoogle Scholar
  47. 47.
    C. Weibel, An Introduction to Homological Algebra (Cambrige University Press, Cambrige, 1994)zbMATHCrossRefGoogle Scholar
  48. 48.
    D. Zagier, Zetafunktionen und quadratische Körper (Springer, Berlin, 1981)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institut für Algebraische GeometrieLeibniz Universität HannoverHannoverGermany

Personalised recommendations