Absolute Ultraviolet Irradiance of the Moon from the LASP Lunar Albedo Measurement and Analysis from SOLSTICE (LLAMAS) Project

  • Martin Snow
  • Gregory M. Holsclaw
  • William E. McClintock
  • Tom Woods
Part of the ISSI Scientific Report Series book series (ISSI, volume 13)


The Moon has been shown to be an extremely stable radiometric reference for calibration and long-term stability measurements of on-orbit sensors. The majority of the previous work on characterizing the lunar reflectance has been in the visible part of the spectrum using ground-based lunar images. The SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) on the SOlar Radiation and Climate Experiment (SORCE) can be used to extend the lunar spectral irradiance dataset to include the 115–300 nm range. SOLSTICE can directly measure both the solar and lunar spectra from orbit, using the same optics and detectors. An observing campaign to map out the reflectance as a function of phase angle began in mid 2006 and continued through 2010. The geometry of SORCE’s orbit is very favorable for lunar observations, and we have measurements spanning a range 0–170 in phase angle. In addition to Earth Observing Systems using the Moon for calibration, recent planetary missions have also made ultraviolet observations of the Moon during Earth flyby, and these SOLSTICE measurements can be useful in calibrating the absolute responsivity of those instruments as well.


Phase Angle Lunar Surface Convolution Kernel Exit Slit Lunar Reconnaissance Orbiter Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. U. Arp, R. Friedman, M.L. Furst, S. Mkar, P.-S. Shaw, SURF III—an improved storage ring for radiometry. Metrologia 37, 357–360 (2000). doi:10.1088/0026-1394/37/5/2ADSCrossRefGoogle Scholar
  2. S. Chandra, J.L. Lean, O.R. White, D.K. Prinz, G.J. Rottman, G.E. Brueckner, Solar uv irradiance variability during the declining phase of the solar cycle 22, Geophys. Res. Lett. 22, 2481–2484 (1995). doi:10.1029/95GL02476ADSCrossRefGoogle Scholar
  3. G.V. Coyne, S.F. Pellicori, Wavelength dependence of polarization. xx. the integrated disk of the moon. Astron. J. 75, 54–60 (1970). doi:10.1086/110940Google Scholar
  4. M.R. Dobber, Moon observations with gome. Proc. SPIE 2831 154–168 (1996)ADSCrossRefGoogle Scholar
  5. M.R. Dobber, GOME moon measurements, including instrument characterization and moon albedo. In: Guyenne T-D, Danesy D (eds) Third ERS Symposium on Space at the service of our Environment, ESA SP-414, p. 743, Florence, Italy, March 1997Google Scholar
  6. A. Dollfus, E. Bowell, Polarimetric properties of the lunar surface and its interpretation. part 1. telescopic observations. Astron. Astrophys. 10, 29–53 (1971)Google Scholar
  7. A. Dollfus, Lunar surface imaging polarimetry: i. roughness and grain size. Icarus 136, 69–103 (1998)Google Scholar
  8. G.K. Fox, A.D. Code, C.M. Anderson, B.L. Babler, K.S. Bjorkman, J.J. Johnson, M.R. Meade, K.H. Nordsieck, A.J. Weitenbeck, N.E.B. Zellner, Solar system observations by the wisconsin utraviolet photopolarimeter experiment—iii. the first ultraviolet linear spectropolarimetry of the moon. Mon. Not. R. Astron. Soc. 298, 303–309 (1998). doi:10.1046/j.1365–8711.1998.01633.xGoogle Scholar
  9. G.R. Gladstone et al., LAMP: the lyman alpha mapping project on nasa’s lunar reconnaissance orbiter mission. Space Sci. Rev. 150, 161–181 (2010). doi:10.1007/s11214-009-9578-6ADSCrossRefGoogle Scholar
  10. B. Hapke, Bidirectional reflectance spectroscopy. 1. theory. J. Geophys. Rev. 86, 3039–3054 (1981)Google Scholar
  11. B. Hapke, Bidirectional reflectance spectroscopy. 3. correction for macroscopic roughness. Icarus 59, 41–59 (1984)Google Scholar
  12. B. Hapke, Bidrectional reflectance spectroscopy. 4. the extinction coefficient and the opposition effect. Icarus 67, 264–280 (1986)Google Scholar
  13. B. Hapke, Theory of reflectance and emitance spectroscopy. (Cambridge University Press, Cambridge, 1993)CrossRefGoogle Scholar
  14. P. Helfenstein, J. Veverka, Photometric properties of lunar terrains derived from Hapke’s equation. Icarus 72, 342–357 (1987). doi:10.1016/0019-1035(87)90179-5ADSCrossRefGoogle Scholar
  15. A.R. Hendrix, The galileo ultraviolet spectrometer: in-flight calibration and ultraviolet albedos of the moon, gaspra, ida, and europa. (Dissertation, University of Colorado, 1996)Google Scholar
  16. A.R. Hendrix, in The lunar phase curve in the near ultraviolet, ed. by R. Strom, P. Bo, M. Walker, N. Rendong. Solar System Remote Sensing, Astrophysics and Space Science Library, vol 278 (2002), p. 29Google Scholar
  17. A.R. Hendrix, G. Holsclaw, L. Esposito, W.E. McClintock, The ultraviolet reflectance of the moon as measured by Cassini UVIS. Lunar Science Forum (2009).
  18. R.C. Henry, et al. Ultraviolet albedo of the moon with the hopkins ultraviolet telescope. Astrophys. J. Lett. 454, L69–L72 (1995). doi:10.1086/309771ADSCrossRefGoogle Scholar
  19. G.M. Holsclaw, W.E. McClintock, D.L. Domingue, N.R. Izenberg, D.T. Blewett, A.L. Sprague, A comparison of the ultraviolet to near-infrared spectral properties of mercury and the moon as observed by messenger. Icarus 209, 179–194 (2010). doi:10.1016/j.icarus.2010.05.001ADSCrossRefGoogle Scholar
  20. S.J. Janz, E. Hilsenrath, R.P. Cebula, T.J. Kelly, Observations of the lunar geometric albedo during the atlas-3 mission. Geophys. Res. Lett. 23, 2297–2300 (1996). doi:10.1029/96GL01122ADSCrossRefGoogle Scholar
  21. H.H. Kieffer, Photometric stability of the lunar surface. Icarus 130, 323–327 (1997). doi:10.1006/icar.1997.5822ADSCrossRefGoogle Scholar
  22. H.H. Kieffer, J.A. Anderson, Use of the moon for spacecraft calibration over 350 to 2500 nm. Proc. SPIE 3498, 325–336 (1998)ADSCrossRefGoogle Scholar
  23. H.H. Kieffer, T.C. Stone, The spectral irradiance of the moon. Astrophys. J. 129, 2287–2901 (2005). doi:10.1086/430185Google Scholar
  24. H.H. Kieffer, R.L. Wildey, Absolute calibration of landsat instruments using the moon. Photogramm. Eng. Remote Sens. 51, 1391–1393 (1985)ADSGoogle Scholar
  25. H.H. Kieffer, R.L. Wildey, Establishing the moon as a spectral radiance standard. J. Atmos. Ocean Tech. 13, 360–375 (1996). doi:10.1175/1520-0426(1996)013¡0360:ETMAAS¿2.0.CO:2Google Scholar
  26. A.P. Lane, W.M. Irvine, Monochromatic phase curves and albedos for the lunar disk. Astron. J. 78, 267–277 (1973). doi:10.1086/111414ADSCrossRefGoogle Scholar
  27. R.L. Lucke, R.C. Henry, W.G. Fastie, Far-ultraviolet albedo of the moon. Astron. J. 81, 1162–1169 (1976). doi:10.1086/112000ADSCrossRefGoogle Scholar
  28. B. Lyot, Research on the polarization of light from planets and from some terrestrial substances, vol. 8 (Annales de l’Observatoire de Paris, Paris, 1929)Google Scholar
  29. A. Mallama, D. Wang, R.A. Howard, Photometry of mercury from soho/lasco and earth. The phase function from 2 to 170 deg. Icarus 155, 253–264 (2002). doi:10.1006/icar.2001.6723Google Scholar
  30. W.E. McClintock, G. Rottman, T.N. Woods, Solar stellar irradiance comparison experiement ii (solstice ii): instrument concept and design. Sol. Phys. 230, 225–258 (2005a). doi:10.1007/s11207-005-7432-xADSCrossRefGoogle Scholar
  31. W.E. McClintock, M. Snow, T.N. Woods, Solar stellar irradiance comparison experiment ii (solstice ii): pre-launch and on-orbit calibrations. Sol. Phys. 230, 259–294 (2005b). doi:10.1007/s11207-005-1585-5ADSCrossRefGoogle Scholar
  32. C.K. Pankratz, B.G. Knapp, R.A. Reukauf, J. Fontenla, M.A. Dorey, L.M. Connelly, A.K. Windnagel, The sorce science data system. Solar Phys. 230, 389–413 (2005). doi:10.1007/s11207-005-5008-4ADSCrossRefGoogle Scholar
  33. S.G. Pugacheva, V.V. Novikov, V.V. Shevchenko, The moon as a natural standard for calibration of spectrofotometric under-sputnik observations. Astron. Vestn. 27, 47–64 (1993)ADSGoogle Scholar
  34. M.S. Robinson, B.W. Hapke, J.B. Garvin, D. Skillman, J.F. Bell, M.P. Ulmer, C.M. Pieters, High resolution mapping of TiO2 abundances on the moon using the hubble space telescope. Geophys. Res. Lett. 34, L13203 (2007). doi:10.1029/2007GL029754ADSCrossRefGoogle Scholar
  35. M. Robinson, S.M. Brylow, M. Tschimmel, D. Humm, S.J. Lawrence, P.C. Thomas, B.W. Denevi, E. Bowman-Cisneros, J. Zerr, M.A. Ravine, M.A. Caplinger, F.T. Ghaemi, J.A. Schaffner, M.C. Malin, P. Mahanti, A. Bartels, J. Anderson, T.N. Tran, E.M. Eliason, A.S. McEwen, E. Turtle, B.L. Jolliff, H. Heisinger, Lunar reconnaissance orbiter camera (LROC) instrument overview, Space Sci. Rev. 150, 81–124 (2010). doi:10.1007/s11214-010-9634-2ADSCrossRefGoogle Scholar
  36. G. Rottman, Solar ultraviolet irradiance and its temporal variation. J. Atmos. Sol. Terr. Phys. 61, 37–44 (1999). doi:10.1016/S1364-6826(98)00114-XADSCrossRefGoogle Scholar
  37. G. Rottman, The sorce mission. Sol. Phys. 230, 7–25 (2005). doi:10.1007/s11207-005-8112-6ADSCrossRefGoogle Scholar
  38. M. Snow, W.E. McClintock, G. Rottman, T.N. Woods, Solar stellar irradiance comparison experiment ii (solstice ii): examination of the solar-stellar comparison technique. Sol. Phys. 230, 295–324 (2005). doi:10.1007/s11207-005-8763-3ADSCrossRefGoogle Scholar
  39. M. Snow, G. Holsclaw, W.E. McClintock, T.N. Woods, Absolute ultraviolet irradiance of the moon from sorce solstice. Proc. SPIE 6677, 66770D (2007). doi:10.1117/12.732498ADSCrossRefGoogle Scholar
  40. T.C. Stone, H.H. Kieffer, Absolute irradiance of the moon for on-orbit calibration. Proc. SPIE 4814, 211–221 (2002)ADSCrossRefGoogle Scholar
  41. M. Taguchi, G. Funabashi, S. Watanabe, Y. Takahashi, H. Fukunishi, Lunar albedo at hydrogen lyman α by the nozomi/uvs. Earth Planets & Space 52, 645–647 (2000)ADSGoogle Scholar
  42. J.K. Wagner, B.W. Hapke, E.N. Wells, Atlas of reflectance spectra of terrestrial, lunar, and meteoric powders and frosts from 92 to 1800 nm. Icarus 69, 14–28 (1987). doi:10.1016/0019-1035(87)90003-0ADSCrossRefGoogle Scholar
  43. H.H. Wu, A.L. Broadfoot, The extreme ultraviolet albedos of the planet mercury and of the moon. Geophys. Res. Lett. 82, 759–761 (1977). doi:10.1029/JB082i005p00759CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Martin Snow
    • 1
  • Gregory M. Holsclaw
    • 1
  • William E. McClintock
    • 1
  • Tom Woods
    • 1
  1. 1.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA

Personalised recommendations