Lyman-α Models for LRO LAMP from MESSENGER MASCS and SOHO SWAN Data

  • Wayne R. Pryor
  • Gregory M. Holsclaw
  • William E. McClintock
  • Martin Snow
  • Ronald J. VervackJr.
  • G. Randall Gladstone
  • S. Alan Stern
  • Kurt D. Retherford
  • Paul F. Miles
Part of the ISSI Scientific Report Series book series (ISSI, volume 13)


From models of the interplanetary Lyman-α glow derived from observations by the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) interplanetary Lyman-α data obtained in 2009–2011 on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft mission, daily all-sky Lyman-α maps were generated for use by the Lunar Reconnaissance Orbiter (LRO) LAMP Lyman-Alpha Mapping Project (LAMP) experiment. These models were then compared with Solar and Heliospheric Observatory (SOHO) Solar Wind ANistropy (SWAN) Lyman-α maps when available. Although the empirical agreement across the sky between the scaled model and the SWAN maps is adequate for LAMP mapping purposes, the model brightness values best agree with the SWAN values in 2008 and 2009. SWAN’s observations show a systematic decline in 2010 and 2011 relative to the model. It is not clear if the decline represents a failure of the model or a decline in sensitivity in SWAN in 2010 and 2011. MESSENGER MASCS and SOHO SWAN Lyman-α calibrations systematically differ in comparison with the model, with MASCS reporting Lyman-α values some 30 % lower than SWAN.


Solar Wind Termination Shock Astronomical Unit Lunar Reconnaissance Orbiter NASA Goddard Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. J.M. Ajello et al., Observations of interplanetary Lyman-alpha with the Galileo ultraviolet spectrometer: multiple scattering effects at solar maximum. Astron. Astrophys. 289, 283–303 (1994)ADSGoogle Scholar
  2. J-L. Bertaux et al., SWAN: a study of solar wind anisotropies on SOHO with Lyman alpha sky mapping. Sol. Phys. 162, 403–439 (1995)ADSCrossRefGoogle Scholar
  3. J-L. Bertaux, E. Quémerais, R. Lallement, Observations of a sky Lyman alpha groove related to enhanced solar wind mass flux in the neutral sheet. Geophys. Res. Lett. 23, 3675–3678 (1996)ADSCrossRefGoogle Scholar
  4. J-L. Bertaux et al., First results from SWAN Lyman α solar wind mapper on SOHO. Sol. Phys. 175, 737–770 (1997)ADSCrossRefGoogle Scholar
  5. M. Bzowski, Density of neutral interstellar hydrogen at the termination shock from Ulysses pickup ion observations. Astron. Astrophys. 491, 7–19 (2008)ADSCrossRefGoogle Scholar
  6. M. Bzowski et al., Solar parameters for modeling the interplanetary background. In: Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere, ed. by E. Quémerais, M. Snow, R.M. Bonnet. ISSI Scientific Report Series, SR-013 (2013)Google Scholar
  7. J.W. Cook et al., Latitudinal anisotropy of the solar far ultraviolet flux: effect on the Lyman-alpha sky background. Astron. Astrophys. 97, 394–397 (1981)ADSGoogle Scholar
  8. J. Costa et al., Heliospheric interstellar H temperature from SOHO/SWAN H cell data. Astron. Astrophys. 349, 660–672 (1999)ADSGoogle Scholar
  9. C. Emerich et al., A new relation between the central spectral solar H I Lyman alpha irradiance and the line irradiance measured by SUMER/SOHO during the cycle 23. Icarus 178, 429–433 (2005)ADSCrossRefGoogle Scholar
  10. G.R. Gladstone et al., LAMP: The Lyman alpha mapping project on NASA’s lunar reconnaissance orbiter mission. Space Sci. Rev. 150, 161–181 (2010)ADSCrossRefGoogle Scholar
  11. G.R. Gladstone et al., Far-ultraviolet reflectance properties of the Moon’s permanently shadowed regions. J. Geophys. Res. 117, E00H04 (2011). doi:10.1029/2011JE003913Google Scholar
  12. D.T. Hall, Ultraviolet resonance radiation and the structure of the heliosphere Dissertation, University of Arizona, 1992Google Scholar
  13. D. Hoffleit, W.H. Warren Jr., The Bright Star Catalogue, 5th Revised edn. (National Space Science Data Center/Astronomical Data Center, 1991)Google Scholar
  14. V.V. Izmodenov et al., Distribution of interstellar hydrogen atoms in the heliosphere and backscattered solar Lyman-α. In: Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere, ed. by E. Quémerais, M. Snow, R.M. Bonnet. ISSI Scientific Report Series, SR-013 (2013)Google Scholar
  15. J.H. King, N.E. Papitashvili, Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02104 (2005). doi:10.1029/2004JA010649ADSCrossRefGoogle Scholar
  16. R. Lallement et al., Deflection of the interstellar neutral hydrogen flow across the heliospheric interface. Science 307, 1447–1449 (2005)ADSCrossRefGoogle Scholar
  17. W.E. McClintock, M.R. Lankton, The mercury atmospheric and surface composition spectrometer for the MESSENGER mission. Space Sci. Rev. 131, 481–521 (2007)ADSCrossRefGoogle Scholar
  18. W.E. McClintock et al., MESSENGER observations of Mercury’s exosphere: detection of magnesium and distribution of constituents. Science 324, 610–613 (2009)ADSGoogle Scholar
  19. D.J. McComas et al., Measurements of variations in the solar wind-interstellar hydrogen charge exchange rate. Geophys. Res. Lett. 26, 2701–2704 (1999)ADSCrossRefGoogle Scholar
  20. W.R. Pryor et al., The Galileo and Pioneer Venus ultraviolet spectrometer experiments: solar Lyman-alpha latitude variation at solar maximum from interplanetary Lyman-alpha observations. Astrophys. J. 394, 363–377 (1992)ADSCrossRefGoogle Scholar
  21. W.R. Pryor, S.J. Lasica, A.I.F. Stewart, D.T. Hall, S. Lineaweaver, W.B. Colwell, J.M. Ajello, O.R. White, W.K. Tobiska, Interplanetary Lyman alpha observations from Pioneer Venus over a solar cycle from 1978 to 1992. J. Geophys. Res. 103, 26833–26849 (1998a)ADSCrossRefGoogle Scholar
  22. W.R. Pryor, M. Witte, J.M. Ajello, Interplanetary Lyman alpha remote sensing with the Ulysses interstellar neutral gas experiment. J. Geophys. Res. 103, 26813–26831 (1998b)ADSCrossRefGoogle Scholar
  23. W.R. Pryor, J.M. Ajello, D.J. McComas, M. Witte, W.K. Tobiska, Hydrogen atom lifetimes in the three-dimensional heliosphere over the solar cycle. J. Geophys. Res. 108, A108034 (2003). doi:10.1029/2003JA009878ADSCrossRefGoogle Scholar
  24. W.R. Pryor et al., Radiation transport of heliospheric Lyman-alpha from combined Cassini and Voyager data sets. Astron. Astrophys. 491, 21–28 (2008)ADSCrossRefGoogle Scholar
  25. E. Quémerais et al., Interplanetary hydrogen absolute ionization rates: retrieving the solar wind mass flux latitude and cycle dependence with SWAN/SOHO maps. J. Geophys. Res. 111, A09114 (2006). doi:10.1029/2006JA011711ADSCrossRefGoogle Scholar
  26. M. Snow et al., A new catalog of ultraviolet stellar spectra for calibration. In: Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere, ed. by E. Quémerais, M. Snow, R.M. Bonnet. ISSI Scientific Report Series, SR-013 (2013)Google Scholar
  27. T.R. Summanen, R. Lallement, E. Quémerais, Solar wind proton flux latitudinal variations: comparisons between Ulysses in situ data and indirect measurements from interstellar Lyman alpha mapping. J. Geophys. Res. 102, 7051–7062 (1997)ADSCrossRefGoogle Scholar
  28. T.R. Summanen et al., Interplanetary Lyman alpha observations of SWAN during the rising phase of the 23rd solar cycle. Adv. Space Res. 29, 457–462 (2002)ADSCrossRefGoogle Scholar
  29. G.E. Thomas, The interstellar wind and its influence on the interplanetary environment. Ann. Rev. Earth Planet. Sci. 6, 173–204 (1978)ADSCrossRefGoogle Scholar
  30. W.K. Tobiska et al., The SOLAR2000 empirical solar irradiance model and forecast tool. J. Atmos. Sol. Terr. Phys. 62, 1233–1250 (2000)ADSCrossRefGoogle Scholar
  31. N. Witt, J.M. Ajello, P.W. Blum, Solar wind latitudinal variations deduced from Mariner 10 interplanetary H (1216 A) observations. Astron. Astrophys. 73, 272–281 (1979)ADSGoogle Scholar
  32. M. Witte, Kinetic parameters of interstellar neutral helium. review of results obtained during one solar cycle with the Ulysses/GAS-instrument. Astron. Astrophys. 426, 835–844 (2004)Google Scholar
  33. T.N. Woods, W.K. Tobiska, G.J. Rottman, J.R. Worden, Improved solar Lyman alpha irradiance modeling from 1947 through 1999 based on UARS observations. J. Geophys. Res. 105, 27195–27215 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wayne R. Pryor
    • 1
    • 2
  • Gregory M. Holsclaw
    • 3
  • William E. McClintock
    • 3
  • Martin Snow
    • 3
  • Ronald J. VervackJr.
    • 4
  • G. Randall Gladstone
    • 5
  • S. Alan Stern
    • 6
  • Kurt D. Retherford
    • 5
  • Paul F. Miles
    • 5
  1. 1.Central Arizona CollegeCoolidgeUSA
  2. 2.LASP, University of Colorado and Space Environment TechnologiesPalisadesUSA
  3. 3.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  4. 4.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA
  5. 5.Southwest Research InstituteSan AntonioUSA
  6. 6.Southwest Research InstituteBoulderUSA

Personalised recommendations