Advertisement

Thirty Years of Interplanetary Background Data: A Global View

  • Eric Quémerais
  • Bill R. Sandel
  • Vladislav V. Izmodenov
  • G. Randall Gladstone
Chapter
Part of the ISSI Scientific Report Series book series (ISSI, volume 13)

Abstract

This chapter compares results of models of the interplanetary background, such as the one presented in Chap.1, to different datasets obtained in the outer heliosphere (Voyager-UVS, Alice New-Horizons) and in the inner heliosphere (SWAN-SOHO, STIS-HST). The aim of this work is to combine these datasets and the models and to derive calibration factors that give a coherent picture of the various instruments and the interplanetary background. These datasets do not overlap and the models are used to bridge the gaps in distance or in time. In the case of Voyager 1 and 2 UVS instruments, the calibration factors derived here are significantly different from the values published by Hall (Ultraviolet resonance radiation and the structure of the heliosphere. Dissertation, University of Arizona, 1992).

Keywords

Hubble Space Telescope Solar Flux Astronomical Unit Slow Solar Wind Outer Heliosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. V.B. Baranov, Gasdynamics of the solar wind interaction with the interstellar medium. Space Sci. Rev. 52, 89–120 (1990)ADSCrossRefGoogle Scholar
  2. V.B. Baranov, Y.G. Malama, Model of the solar wind interaction with the local interstellar medium—numerical solution of self-consistent problem. J. Geophys. Res. 98, 15157 (1993)ADSCrossRefGoogle Scholar
  3. L. Ben-Jaffel, O. Puyoo, R. Ratkiewicz, Far -ultraviolet echoes from the frontier between the solar wind and the local interstellar cloud. Astrophys. J. 533, 924–930 (2000)ADSCrossRefGoogle Scholar
  4. J-L. Bertaux, J.E. Blamont, Evidence for an extra-terrestrial Lyman-alpha emission, the interstellar wind. Astron. Astrophys. 11, 200 (1971)Google Scholar
  5. J-L. Bertaux, R. Lallement, V.G. Kurt, E.N. Mironova, Characteristics of the local interstellar hydrogen determined from PROGNOZ 5 and 6 interplanetary Lyman-alpha line profile measurements with a hydrogen absorption cell. Astron. Astrophys. 150, 1–20 (1985)Google Scholar
  6. J-L. Bertaux et al., SWAN: A study of solar wind anisotropies on SOHO with Lyman alpha sky mapping. Solar Phys. 162, 403–439 (1995)Google Scholar
  7. J-L. Bertaux et al., SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55, 1673–1700 (2007)ADSCrossRefGoogle Scholar
  8. P.W. Blum, H-J. Fahr, The distribution of interplanetary hydrogen. Astrophys. Lett. 6, 127 (1970)ADSGoogle Scholar
  9. J.C. Brandt, J.W. Chamberlain, Interplanetary gas. I. Hydrogen radiation in the night sky. Astrophys. J. 130, 670 (1959)CrossRefGoogle Scholar
  10. M. Brasken, E. Kyrölä, Resonance scattering of Lyman alpha from interstellar hydrogen. Astron. Astrophys. 332, 732–738 (1998)ADSGoogle Scholar
  11. A.L. Broadfoot, B.R. Sandel et al., Ultraviolet spectrometer experiment for the Voyager mission. Space Sci. Rev. 21, 183 (1977)ADSCrossRefGoogle Scholar
  12. A.L. Broadfoot, S.K. Atreya, J-L. Bertaux, J.E. Blamont, A.J. Dessler, T.M. Donahue, W.T. Forrester, D.T. Hall, F. Herbert, J.B. Holberg, Ultraviolet spectrometer observations of Neptune and Triton. Science 246, 1459–1466 (1989)ADSCrossRefGoogle Scholar
  13. M. Bzowski et al., in Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere, ed. by E. Quémerais, M. Snow, R.M. Bonnet. ISSI Scientific Report Series, SR-013 (2013)Google Scholar
  14. J.T. Clarke, R. Lallement, J-L. Bertaux, E. Quémerais, HST/GHRS observations of the interplanetary medium downwind and in the inner solar system. Astrophys. J. 448, 893 (1995)ADSCrossRefGoogle Scholar
  15. J.T. Clarke, R. Lallement, J-L. Bertaux, H-J. Fahr, E. Quémerais, H. Scherer, HST/GHRS observations of the velocity structure of interplanetary hydrogen. Astrophys. J. 499, 482 (1998)ADSCrossRefGoogle Scholar
  16. G. de Toma, E. Quémerais, B.R. Sandel, Long-term variation of the interplanetary H Ly alpha glow: Voyager measurements and implications for the solar H Ly alpha irradiance. Astrophys. J. 491, 980 (1997)ADSCrossRefGoogle Scholar
  17. C. Emerich, P. Lemaire, J-C. Vial, W. Curdt, U. Schühle, K. Wilhelm, A new relation between the central spectral solar H I Lyman α irradiance and the line irradiance measured by SUMER/SOHO during the cycle 23. Icarus 178, 429–433 (2005)ADSCrossRefGoogle Scholar
  18. P. Gangopadhyay, V.V. Izmodenov, D.E. Shemansky, M.A. Gruntman, D.L. Judge, Reappraisal of the Pioneer 10 and Voyager 2 Lyα intensity measurements. Astrophys. J. 628, 514–519 (2005)ADSCrossRefGoogle Scholar
  19. G.R. Gladstone et al., New Horizons cruise observations of Lyα emissions from the interplanetary medium. In: Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere, ed. by E. Quémerais, M. Snow, R.M. Bonnet. ISSI Scientific Report Series, SR-013 (2013)Google Scholar
  20. G. Gloeckler, E. Möbius, J. Geiss, M. Bzowski, S. Chalov, H. Fahr, D.R. McMullin, H. Noda, M. Oka, D. Ruciński, Observations of the helium focusing cone with pickup ions. Astron. Astrophys. 426, 845–854 (2004)ADSCrossRefGoogle Scholar
  21. D.T. Hall, Ultraviolet resonance radiation and the structure of the heliosphere. Dissertation, University of Arizona, 1992Google Scholar
  22. D.T. Hall, D.E. Shemansky, D.L. Judge, P. Gangopadhyay, M.A. Gruntman, Heliospheric hydrogen beyond 15 AU - evidence for a termination shock. J. Geophys. Res. 98, 15185–15192 (1993)ADSCrossRefGoogle Scholar
  23. V.V. Izmodenov, M.A. Gruntman, Y.G. Malama, Interstellar hydrogen atom distribution function in the outer heliosphere. J. Geophys. Res. 106, 10681–10690 (2001)ADSCrossRefGoogle Scholar
  24. V.V. Izmodenov, Y.G. Malama, M.S. Ruderman, Solar cycle influence on the interaction of the solar wind with local interstellar cloud. Astron. Astrophys. 429, 1069–1080 (2005)ADSzbMATHCrossRefGoogle Scholar
  25. V.V. Izmodenov, Y.G. Malama, M.S. Ruderman, Modeling of the outer heliosphere with the realistic solar cycle. Adv. Space Res. 41, 318–324 (2008)ADSCrossRefGoogle Scholar
  26. V.V. Izmodenov et al., in Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere, ed. by E. Quémerais, M. Snow, R.M. Bonnet. ISSI Scientific Report Series, SR-013 (2013)Google Scholar
  27. H.U. Keller, K. Richter, G.E. Thomas, Multiple scattering of solar resonance radiation in the nearby interstellar medium. ii. Astron. Astrophys. 102, 415–423 (1981)Google Scholar
  28. R. Lallement, J.C. Reymond, J. Vallerga, M. Lemoine, F. Delaudier, J.-L. Bertaux, Modeling the interstellar-interplanetary helium 58.4 nm resonance glow: towards a reconciliation with particle measurements. Astron. Astrophys. 426, 875–884 (2004)Google Scholar
  29. R. Lallement, E. Quémerais, J-L. Bertaux, S. Ferron, D. Koutroumpa, R. Pellinen, Deflection of the interstellar neutral hydrogen flow across the heliospheric interface. Science 307, 1447–1449 (2005)ADSCrossRefGoogle Scholar
  30. R. Lallement, E. Quémerais, J-L. Bertaux, B.R. Sandel, V. Izmodenov, Voyager measurements of hydrogen Lyman-α diffuse emission from the milky way. Science 334, 1665 (2011)ADSCrossRefGoogle Scholar
  31. P. Lemaire, C. Emerich, W. Curdt, U. Schuehle, K. Wilhelm, Solar HI Lyman alpha full disk profile obtained with the SUMER/SOHO spectrometer. Astron. Astrophys. 334, 1095–1098 (1998)ADSGoogle Scholar
  32. W.E. McClintock, M.R. Lankton, The mercury atmospheric and surface composition spectrometer for the MESSENGER mission. Space Sci. Rev. 131, 481–521 (2007)ADSCrossRefGoogle Scholar
  33. D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1970)Google Scholar
  34. E. Möbius, M. Bzowski, S. Chalov, H-J. Fahr, G. Gloeckler, V.V. Izmodenov, R. Kallenbach, R. Lallement, D. McMullin, H. Noda, Synopsis of the interstellar He parameters from combined neutral gas, pickup ion and uv scattering observations and related consequences. Astron. Astrophys. 426, 897–907 (2004)ADSCrossRefGoogle Scholar
  35. W.R. Pryor, J.M. Ajello, C.A. Barth, C.W. Hord, A.I.F. Stewart, K.E. Simmons, W.E. McClintock, B.R. Sandel, D.E. Shemansky, The Galileo and Pioneer Venus ultraviolet spectrometer experiments - solar Lyman-alpha latitude variation at solar maximum from interplanetary Lyman-alpha observations. Astrophys. J. 394, 363–377 (1992)ADSCrossRefGoogle Scholar
  36. W.R. Pryor, C.A. Barth, C.W. Hord, A.I.F. Stewart, K.E. Simmons, J.J. Gebben, W.E. McClintock, S. Lineaweaver, J.M. Ajello, W.K. Tobiska, Latitude variations in interplanetary Lyman-α data from the Galileo EUVS modeled with solar He 1083 nm images. Geophys. Res. Lett. 23, 1893–1896 (1996)ADSCrossRefGoogle Scholar
  37. E. Quémerais, Angle dependent partial frequency redistribution in the interplanetary medium at Lyman alpha. Astron. Astrophys. 358, 353–367 (2000)ADSGoogle Scholar
  38. E. Quémerais, J.L. Bertaux, Radiative transfer in the heliosphere at Lyman α: comparison of numerical and Monte Carlo simulations. Adv. Space Res. 13, 298–298 (1993)ADSCrossRefGoogle Scholar
  39. E. Quémerais, J-L. Bertaux, 14-day forecast of solar indices using interplanetary Lyman α background data. Geophys. Res. Lett. 29, 1018 (2002). doi:10.1029/2001GL013920ADSCrossRefGoogle Scholar
  40. E. Quémerais, V.V. Izmodenov, Effects of the heliospheric interface on the interplanetary Lyman alpha glow seen at 1 AU from the Sun. Astron. Astrophys. 396, 269–281 (2002)ADSCrossRefGoogle Scholar
  41. E. Quémerais, B.R. Sandel, R. Lallement, J-L. Bertaux, A new source of Lyα emission detected by Voyager UVS: heliospheric or galactic origin? Astron. Astrophys. 299, 249 (1995)ADSGoogle Scholar
  42. E. Quémerais, Y.G. Malama, B.R. Sandel, R. Lallement, J-L. Bertaux, V.B. Baranov, Outer heliosphere Lyman α background derived from two-shock model hydrogen distributions: application to the Voyager UVS data. Astron. Astrophys. 308, 279–289 (1996)ADSGoogle Scholar
  43. E. Quémerais, J-L. Bertaux, R. Lallement, B.R. Sandel, V.V. Izmodenov, Voyager 1/UVS Lyman α glow data from 1993 to 2003: hydrogen distribution in the upwind outer heliosphere. J. Geophys. Res. 108, 8029 (2003). doi:10.1029/2003JA009871CrossRefGoogle Scholar
  44. E. Quémerais, R. Lallement, S. Ferron, D. Koutroumpa, J-L. Bertaux, E. Kyrölä, W. Schmidt, Interplanetary hydrogen absolute ionization rates: retrieving the solar wind mass flux latitude and cycle dependence with SWAN/SOHO maps. J. Geophys. Res. 111, A09114 (2006)ADSCrossRefGoogle Scholar
  45. E. Quémerais, R. Lallement, D. Koutroumpa, P. Lamy, Velocity profiles in the solar corona from multi-instrument observations. Astrophys. J. 667, 1229–1234 (2007)ADSCrossRefGoogle Scholar
  46. E. Quémerais, V.V. Izmodenov, D. Koutroumpa, Y.G. Malama, Time dependent model of the interplanetary Lyman α glow: applications to the SWAN data. Astron. Astrophys. 488, 351–359 (2008)ADSCrossRefGoogle Scholar
  47. E. Quémerais, R. Lallement, B.R. Sandel, J.T. Clarke, Interplanetary Lyman α observations: intensities from Voyagers and line profiles from HST/STIS. Space Sci. Rev. 143, 151–162 (2009)ADSCrossRefGoogle Scholar
  48. G.J. Rottman, C.A. Barth, R.J. Thomas, G.H. Mount, G.M. Lawrence, D.W. Rusch, R.W. Sanders, G.E. Thomas, J. London, Solar spectral irradiance, 120 to 190 nm, October 13, 1981 - January 3, 1982. Geophys. Res. Lett. 9, 587–590 (1982)ADSCrossRefGoogle Scholar
  49. M. Snow et al., A new catalog of ultraviolet stellar spectra for calibration. In: Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere, ed. by E. Quémerais, M. Snow, R.M. Bonnet. ISSI Scientific Report Series, SR-013 (2013)Google Scholar
  50. G.E. Thomas, The interstellar wind and its influence on the interplanetary environment. Ann. Rev. Earth Planet. Sci. 6, A78-38764 16-42 (1978). doi:10.1146/annurev.ea.06.050178.001133Google Scholar
  51. G.E. Thomas, R.F. Krassa, OGO 5 measurements of the Lyman alpha sky background. Astron. Astrophys. 11, 218 (1971)ADSGoogle Scholar
  52. M. Witte, Kinetic parameters of interstellar neutral helium. review of results obtained during one solar cycle with the Ulysses/GAS-instrument. Astron. Astrophys. 426, 835–844 (2004)Google Scholar
  53. T.N. Woods, W.K. Tobiska, G.J. Rottman, J.R. Worden, Improved solar Lyman α irradiance modeling from 1947 through 1999 based on UARS observations. J. Geophys. Res. 105, 27195–27216 (2000)ADSCrossRefGoogle Scholar
  54. T.N. Woods et al., Solar irradiance reference spectra (SIRS) for the 2008 whole heliosphere interval (WHI). Geophys. Res. Lett. 36, L01101 (2009). doi:10.1029/2008GL036373ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Eric Quémerais
    • 1
  • Bill R. Sandel
    • 2
  • Vladislav V. Izmodenov
    • 3
    • 4
  • G. Randall Gladstone
    • 5
  1. 1.LATMOS-IPSL, Université Versailles-Saint QuentinGuyancourtFrance
  2. 2.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  3. 3.Lomonosov Moscow State University, School of Mechanics and Mathematics Institute for Problems in Mechanics, Russian Academy of SciencesMoscowRussia
  4. 4.Space Research Institute, Russian Academy of SciencesMoscowRussia
  5. 5.Southwest Research InstituteSan AntonioUSA

Personalised recommendations