Solar Parameters for Modeling the Interplanetary Background

  • Maciej Bzowski
  • Justyna M. Sokół
  • Munetoshi Tokumaru
  • Kenichi Fujiki
  • Eric Quémerais
  • Rosine Lallement
  • Stéphane Ferron
  • Peter Bochsler
  • David J. McComas
Part of the ISSI Scientific Report Series book series (ISSI, volume 13)


The goal of the working group on cross-calibration of past and present ultraviolet (UV) datasets of the International Space Science Institute (ISSI) in Bern, Switzerland was to establish a photometric cross-calibration of various UV and extreme ultraviolet (EUV) heliospheric observations. Realization of this goal required a credible and up-to-date model of the spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the latter part of the project: the solar factors responsible for shaping the distribution of neutral interstellar H in the heliosphere. In this paper we present the solar Lyman-α flux and the topics of solar Lyman-α resonant radiation pressure force acting on neutral H atoms in the heliosphere. We will also discuss solar EUV radiation and resulting photoionization of heliospheric hydrogen along with their evolution in time and the still hypothetical variation with heliolatitude. Furthermore, solar wind and its evolution with solar activity is presented, mostly in the context of charge exchange ionization of heliospheric neutral hydrogen, and dynamic pressure variations. Also electron-impact ionization of neutral heliospheric hydrogen and its variation with time, heliolatitude, and solar distance is discussed. After a review of the state of the art in all of those topics, we proceed to present an interim model of the solar wind and the other solar factors based on up-to-date in situ and remote sensing observations. This model was used by Izmodenov et al. (2013, this volume) to calculate the distribution of heliospheric hydrogen, which in turn was the basis for intercalibrating the heliospheric UV and EUV measurements discussed in Quémerais et al. (2013, this volume). Results of this joint effort will also be used to improve the model of the solar wind evolution, which will be an invaluable asset in interpretation of all heliospheric measurements, including, among others, the observations of Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).


Solar Wind Ionization Rate Solar Wind Speed Carrington Rotation Solar Wind Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. P.O. Amblard, S. Moussaoui, T. Dudok de Wit, J. Aboudarham, M. Kretzschmar, J. Lilensten, F. Auchère, The euv sun as the superposition of elementary suns. Astron. Astrophys. 487, L13–L16 (2008). doi:10.1051/0004-6361:200809588ADSCrossRefGoogle Scholar
  2. G. Artzner, J.C. Vial, P. Lemaire, P. Gouttebroze, J. Leibacher, Simultaneous time-resolved observations of the H L-alpha Mg K 2795 A, and Ca K solar lines. Astrophys. J. Lett. 224, L83–L85 (1978). doi:10.1086/182765ADSCrossRefGoogle Scholar
  3. K. Asai, M. Kojima, M. Tokumaru, A. Yokobe, B.V. Jackson, P.L. Hick, P.K. Manoharan, Heliospheric tomography using interplanetary scintillation observations. iii - correlation between speed and electron density fluctuations in the solar wind. J. Geophys. Res. 103, 1991–2001 (1998). doi:10.1029/97JA02750Google Scholar
  4. J.R. Asbridge, S.J. Bame, W.C. Feldman, M.D. Montgomery, Helium and hydrogen velocity differences in the solar wind. J. Geophys. Res. 81, 2719–2727 (1976). doi:10.1029/JA08li016p02719ADSCrossRefGoogle Scholar
  5. F. Auchère, Effect of the H I Ly α chromospheric flux anisotropy on the total intensity of the resonantly scattered coronal radiation. Astrophys. J. 622, 737–743 (2005). doi:10.1086/427903ADSCrossRefGoogle Scholar
  6. F. Auchère, J.W. Cook, J.S. Newmark, D.R. McMullin, R. von Steiger, M. Witte, Model of the all-sky He II 30.4 nm solar flux. Adv. Space Res. 35, 388–392 (2005a). doi:10.1016/j.asr.2005.02.036Google Scholar
  7. F. Auchère, D.R. McMullin, J.W. Cook et al., A model for solar euv flux helium photoionization throughout the 3-dimensional heliosphere, in Proceedings of the Solar Wind 11 / SOHO 16 “Connecting the Sun and Heliosphere” Conference, Whistler, Canada, June 2005. S.P. ESA-592, ed. by B. Fleck, T.H. Zurbuchen, H. Lacoste (2005b), pp. 327–329Google Scholar
  8. S.J. Bame, E.W. Hones Jr., S.-L. Akasofu, M.D. Montgomery, J.R. Asbridge, Geomagnetic storm particles in the high-latitude magnetotail. J. Geophys. Res. 76, 7566–7583 (1971). doi: 10.1029/JA076i031p07566ADSCrossRefGoogle Scholar
  9. S.J. Bame, J.R. Asbridge, H.E. Felthauser, J.P. Glore, H.L. Hawk, J. Chavez, ISEE-C solar wind plasma experiment. IEEE Trans. Geosci. Electron. 16, 160–162 (1978a)ADSCrossRefGoogle Scholar
  10. S.J. Bame, J.R. Asbridge, H.E. Felthauser, J.P. Glore, G. Paschmann, P. Hemmerich, K. Lehmann, H. Rosenbauer, ISEE-1 and ISEE-2 fast plasma experiment and the ISEE-1 solar wind experiment. IEEE Trans. Geosci. Electron. 16, 216–220 (1978b)ADSCrossRefGoogle Scholar
  11. S.J. Bame, D.J. McComas, B.L. Barraclough, J.L. Phillips, K.J. Sofaly, J.C. Chavez, B.E. Goldstein, R.K. Sakurai, The Ulysses solar wind plasma experiment. Astron. Astrophys. Supp. 92, 237–265 (1992)ADSGoogle Scholar
  12. V.B. Baranov, Kinetic and hydrodynamic approaches in space plasma, in The Physics of the Heliospheric Boundaries, ed. by V.V. Ismodenov, R. Kallenbach, Vol. SR-005 of ISSI Science Report, pp. 1–26, ESA Publications Division, EXTEC ISBN 1608-280X (2006a)Google Scholar
  13. V.B. Baranov, Early concepts of the heliospheric interface: plasma, in The Physics of the Heliospheric Boundaries, ed. by V.V. Ismodenov, R. Kallenbach, vol. SR-005 of ISSI Science Report, pp. 27–44 (2006b)Google Scholar
  14. V.B. Baranov, Y.G. Malama, Model of the solar wind interaction with the local interstellar medium—numerical solution of self-consistent problem. J. Geophys. Res. 98, 15157–15163 (1993). doi:10.1029/93JA01171ADSCrossRefGoogle Scholar
  15. V.B. Baranov, M.G. Lebedev, Y.G. Malama, The influence of the interface between the heliosphere and local interstellar medium on the penetration of H atoms to the solar system. Astrophys. J. 375, 347–351 (1991). doi:10.1086/170194ADSCrossRefGoogle Scholar
  16. C.F. Barnett, H.T. Hunter, M.I. Kirkpatrick, I. Alvarez, C. Cisneros, R.A. Phaneuf, Atomic data for fusion, in Volume 1: Collisions of H, H 2, He, and Li Atoms and Ions with Atoms and Moleucles. vol. ORNL-6086/V1 (Oak Ridge National Laboratories, Oak Ridge, Tennessee, 1990)Google Scholar
  17. J.-L. Bertaux, J.E. Blamont, Evidence for a source of an extraterrestrial hydrogen Lyman alpha emission. Astron. Astrophys. 11, 200–217 (1971)ADSGoogle Scholar
  18. J.-L. Bertaux, E. Kyrölä, E. Quémerais, R. Pellinen, R. Lallement, W. Schmidt, M. Berthé, E. Dimarellis, J.P. Goutail, C. Taulemasse, C. Bernard, G. Leppelmeier, T. Summanen, H. Hannula, H. Huomo, V. Kehlä, S. Korpela, K. Leppälä, E. Strömmer, J. Torsti, K. Viherkanto, J.-F. Hochedez, G. Chretiennot, R. Peyroux, T. Holzer, SWAN: a study of solar wind anisotropies on SOHO with Lyman alpha sky mapping. Sol. Phys. 162, 403–439 (1995). doi:10.1007/BF00733435ADSCrossRefGoogle Scholar
  19. J.-L. Bertaux, E. Quémerais, R. Lallement, Observations of a sky Lyman α groove related to enhanced solar wind mass flux in the neutral sheet. Geophys. Res. Lett. 23, 3675–3678 (1996). doi:10.1029/96GL03475ADSCrossRefGoogle Scholar
  20. J.-L. Bertaux, E. Quémerais, R. Lallement, E. Kyrölä, W. Schmidt, T. Summanen, T. Mäkinen, The first 1.5 years of observation from SWAN Lyman-alpha solar wind mapper on SOHO, in Fifth SOHO Workshop: The Corona and Solar Wind near Minimum Activity, Oslo, Norway, June 1997, ed. by A. Wilson. S.P. ESA-404, p. 29 (1997)Google Scholar
  21. J.-L. Bertaux, E. Kyrölä, E. Quémerais, R. Lallement, W. Schmidt, J. Costa, T. Mäkinen, SWAN observations of the solar wind latitude distribution and its evolution since launch. Space Sci. Rev. 87, 129–132 (1999). doi:10.1023/A:1005178402842ADSCrossRefGoogle Scholar
  22. J.-L. Bertaux, E. Quémerais, R. Lallement, E. Lamassoure, W. Schmidt, E. Kyrölä, Monitoring solar activity on the far side of the sun from sky reflected Lyman α radiation. Geophys. Res. Lett. 27, 1331–1334 (2000). doi:10.1029/1999GL003722ADSCrossRefGoogle Scholar
  23. S. Błeszyński, S. Grzȩdzielski, D. Ruciński, J. Jakimiec, Expected fluxes of about 1 keV neutral H atoms in interplanetary space—comparison with the uv background and possibility of detection. Planet. Space Sci. 40, 1525–1533 (1992). doi:10.1016/0032-0633(92)90049-TCrossRefGoogle Scholar
  24. P. Bochsler, M. Bzowski, L. Didkovsky, H. Kucharek, J.M. Sokół, T.N. Woods, Ionization rates (preliminary), (2012) in preparationGoogle Scholar
  25. A. Bonetti, G. Moreno, S. Cantarano, A. Egidi, R. Marconero, F. Palutan, G. Pizella, Solar wind observations with satellite ESRO HEOS-1 in December 1969. Nuovo Cimento B Series 46, 307–323 (1969). doi:10.1007/BF02711013ADSCrossRefGoogle Scholar
  26. R.M. Bonnet, P. Lemaire, J.C. Vial, G. Artzner, P. Gouttebroze, A. Jouchoux, A. Vidal-Madjar, J.W. Leibacher, A. Skumanich, The LPSP instrument on OSO 8. ii—in-flight performance and preliminary results. Astrophys. J. 221, 1032–1053 (1978). doi:10.1086/156109Google Scholar
  27. J.C. Brandt, R.G. Roosen, R.S. Harrington, Interplanetary gas. xvii. an astrometric determination of solar wind velocities from orientations of ionic comet tails. Astrophys. J. 177, 277–284 (1972). doi:10.1086/151706Google Scholar
  28. J.C. Brandt, R.S. Harrington, R.G. Roosen, Interplanetary gas. xx. does the radial solar wind speed increase with latitude. Astrophys. J. 196, 877–878 (1975). doi:10.1086/153478Google Scholar
  29. M. Brasken, E. Kyrölä, Resonance scattering of Lyman alpha from interstellar hydrogen. Astron. Astrophys. 332, 732–738 (1998)ADSGoogle Scholar
  30. J.S. Bridge, A. Egidi, A.J. Lazarus, E. Lyon, L. Jacobson, Preliminary results of plasma measurements on IMP-A, in Space Research. V:969–978, ed. by D.G. King-Hele, P. Muller, G. Righini (North Holland, Amsterdam, 1965)Google Scholar
  31. M. Bzowksi, Time dependent radiation pressure and time dependent 2d ionisation rate for heliospheric modelling, in The Outer Heliosphere: The Next Frontiers, Cospar Colloquia Series, vol. 11, ed. by K. Scherer, H. Fichtner, H.-J. Fahr, E. Marsch (Pergamon Press, Amsterdam, 2001a), pp. 69–72Google Scholar
  32. M. Bzowski, A model of charge exchange of interstellar hydrogen on a time-dependent, 2d solar wind. Space Sci. Rev. 97, 379–383 (2001b). doi:10.1023/A:1011814125384ADSCrossRefGoogle Scholar
  33. M. Bzowski, Response of the groove in heliospheric Lyman-α glow to latitude-dependent ionization rate. Astron. Astrophys. 408, 1155–1164 (2003). doi:10.1051/0004-6361:20031023ADSCrossRefGoogle Scholar
  34. M. Bzowski, Survival probability and energy modification of hydrogen energetic neutral atoms on their way from the termination shock to earth orbit. Astron. Astrophys. 488, 1057–1068 (2008). doi:10.1051/0004-6361:200809393ADSCrossRefGoogle Scholar
  35. M. Bzowski, D. Ruciński, Solar cycle modulation of the interstellar hydrogen density distribution in the heliosphere. Space Sci. Rev. 72, 467–470 (1995a). doi:10.1007/BF00768821ADSCrossRefGoogle Scholar
  36. M. Bzowski, D. Ruciński, Variability of the neutral hydrogen density distribution due to solar cycle related effects. Adv. Space Res. 16, 131–134 (1995b). doi:10.1016/0273-1177(95)00325-9ADSCrossRefGoogle Scholar
  37. M. Bzowski, D. Ruciński, Neutral solar wind evolution during solar cycle, in Solar Wind Eight, ed. by D. Winterhalter, J.T. Gosling, S.R. Habbal, W.S. Kurth, M. Neugebauer. AIP Conference Proceedings, vol. 382 (American Institute of Physics, Woodbury, New York, 1996), pp. 650–654. doi:10.1063/1.51452Google Scholar
  38. M. Bzowski, S. Tarnopolski, Neutral atom transport from the termination shock to 1 au, in Physics of the Inner Heliosheath, ed. by J. Heerikhuisen, V. Florinski, G.P. Zank, N.V. Pogorelov. AIP Conference Series, vol. 858, pp. 251–256 (2006). doi:10.1063/1.2359335Google Scholar
  39. M. Bzowski, H.-J. Fahr, D. Ruciński, H. Scherer, Variation of bulk velocity and temperature anisotropy of neutral heliospheric hydrogen during the solar cycle. Astron. Astrophys. 326, 396–411 (1997)ADSGoogle Scholar
  40. M. Bzwoski, T. Summanen, D. Ruciński, E. Kyrölä, Response of interplanetary glow to global variations of hydrogen ionization rate and solar Lyman-α flux. J. Geophys. Res. 107, ssh2-1 (2002). doi:10.1029/2001JA000141Google Scholar
  41. M. Bzowski, T. Mäkinen, E. Kyrölä, T. Summanen, E. Quémerais, Latitudinal structure and north-south asymmetry of the solar wind from Lyman-α remote sensing by SWAN. Astron. Astrophys. 408, 1165–1177 (2003). doi:10.1051/0004-6361:20031022ADSCrossRefGoogle Scholar
  42. M. Bzowski, E. Möbius, S. Tarnopolski, V. Izmodenov, G. Gloeckler, Density of neutral interstellar hydrogen at the termination shock from Ulysses pickup ion observations. Astron. Astrophys. 491, 7–19 (2008). doi:10.1051/0004-6361:20078810ADSCrossRefGoogle Scholar
  43. M. Bzowski, E. Möbius, S. Tarnopolski, V. Izomdenov, G. Gloeckler, Neutral H density at the termination shock: a consolidation of recent results. Space Sci. Rev. 143, 177–190 (2009)ADSCrossRefGoogle Scholar
  44. S. Chabrillat, G. Kockarts, Simple parameterization of the absorption of the solar Lyman-alpha line. Geophys. Res. Lett. 24, 2659–2662 (1997)ADSCrossRefGoogle Scholar
  45. W.A. Coles, S. Maagoe, Solar-wind velocity from IPS observations. J. Geophys. Res. 77, 5622–5624 (1972). doi: 10.1029/JA077i028p05622ADSCrossRefGoogle Scholar
  46. W.A. Coles, B.J. Rickett, IPS observations of the solar wind speed out of the ecliptic. J. Geophys. Res. 81, 4797–4799 (1976)ADSCrossRefGoogle Scholar
  47. J.W. Cook, G.E. Brueckner, M.E. van Hoosier, Variability of the solar flux in the far ultraviolet 1175–2100 Å. J. Geophys. Res. 85, 2257–2268 (1980)ADSCrossRefGoogle Scholar
  48. J.W. Cook, R.R. Meier, G.E. Brueckner, M.E. van Hoosier, Latitudinal anisotropy of the solar far ultraviolet flux—effect on the Lyman alpha sky background. Astron. Astrophys. 97, 394–397 (1981)ADSGoogle Scholar
  49. A.E. Covington, Micro-wave solar noise observations during the partial eclipse of November 23, 1946. Nature 159, 405–406 (1947). doi:10.1038/159405a0ADSCrossRefGoogle Scholar
  50. J.M.A. Danby, J.L. Camm, Statistical dynamics and accretion. Monthly Not. Royal Astron. Soc. 117, 150 (1957)MathSciNetADSGoogle Scholar
  51. G. de Toma, Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Solar Phys. 274, 195–217 (2011). doi:10.1007/s11207-010-9677-2ADSCrossRefGoogle Scholar
  52. P.A. Dennison, A. Hewish, The solar wind outside the plane of the ecliptic. Nature 213, 343–346 (1967). doi:10.1038/213343a0ADSCrossRefGoogle Scholar
  53. T. Dudok de Wit, J. Lilensten, J. Aboudarham, P.-O. Amblard, M. Kretzschmar, Retrieving the solar euv spectrum from a reduced set of spectral lines. Ann. Geophys. 23, 3055 (2005)ADSCrossRefGoogle Scholar
  54. T. Dudok de Wit, M. Kretzschmar, J. Aboudarham, P.-O. Amblard, F. Auchère, J. Lilensten, Which solar euv indices are best for reconstructing the solar euv irradiance? Adv. Space Res. 42, 903–911 (2008). doi:10.1016/j.asr.2007.04.019ADSCrossRefGoogle Scholar
  55. T. Dudok de Wit, M. Kretzschmar, J. Lilensten, T. Woods, Finding the best proxies for the solar uv irradiance. Geophys. Res. Lett. 36, L10 (2009). doi:10.1029/2009/GL037825CrossRefGoogle Scholar
  56. R.W. Ebert, D.J. McComas, H.A. Elliott, R.J. Forsyth, J.T. Gosling, Bulk properites of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: three polar orbits of observations. J. Geophys. Res. 114, A1109 (2009). doi:10.1029/2008JA013631ADSCrossRefGoogle Scholar
  57. C. Emerich, P. Lemaire, J.-C. Vial, W. Curdt, U. Schüle, K. Wilhelm, A new relation between the central spectral solar H I Lyman α irradiance and the line irradiance measured by sumer/SOHO during cycle 23. Icarus 178, 429–433 (2005)ADSCrossRefGoogle Scholar
  58. H.-J. Fahr, Non-thermal solar wind heating by supra-thermal ions. Solar Phys. 30, 193–206 (1973)ADSCrossRefGoogle Scholar
  59. H.-J. Fahr, Change of interstellar gas parameters in stellar wind dominated atmospheres: solar case. Astron. Astrophys. 66, 103–117 (1978)ADSGoogle Scholar
  60. H.-J. Fahr, Interstellar hydrogen subject to a net repulsive solar force field. Astron. Astrophys. 77, 101–109 (1979)ADSGoogle Scholar
  61. H.-J. Fahr, The 3d heliosphere: three decades of growing knowledge. Adv. Space Res. 32, 3–13 (2004)ADSCrossRefGoogle Scholar
  62. H.-J. Fahr, D. Ruciński, Neutral interestellar gas atoms reducing the solar wind number and fractionally neutralizing the solar wind. Astron. Astrophys. 350, 1071–1078 (1999)ADSGoogle Scholar
  63. H.-J. Fahr, D. Ruciński, Modification of properties and dynamics of distant solar wind due to its interaction with neutral interstellar gas. Space Sci. Rev. 97, 407–412 (2001). doi:10.1023/A:1011874311272ADSCrossRefGoogle Scholar
  64. H.-J. Fahr, D. Ruciński, Heliospheric pick-up ions influencing thermodynamics and dynamics of the distant solar wind. Nonlinear Proc. Geophys. 9, 377–386 (2002)ADSCrossRefGoogle Scholar
  65. H.-J. Fahr, K. Scherer Perturbations of the solar wind flow by radial and latitudinal pick-up ion pressure gradients. Ann. Geophys. 22, 2229–2238 (2004)Google Scholar
  66. H.-J. Fahr, H. Fichtner, K. Scherer, Theoretical aspects of energetic neutral atoms as messengers from distant plasma sites with emphasis on the heliosphere. Rev. Geophys. 45, RG4003 (2007). doi:10.1029/2006RG000214ADSCrossRefGoogle Scholar
  67. W.C. Feldman, J.R. Asbridge, S.J. Bame, M.D. Montgomery, Double ion streams in the solar wind. J. Geophys. Res. 78, 2017–2027 (1973). doi:10.1029/JA078i013p02017ADSCrossRefGoogle Scholar
  68. W.L. Fite, A.C.S. Smith, R.F. Stebbins, Charge transfer in collisions involving symmetric and asymmetric resonance. Proc. R. Soc. London Ser. A 268, 527 (1962)ADSCrossRefGoogle Scholar
  69. L. Floyd, D.K. Prinz, P.C. Crane, L.C. Herring, Solar uv irradiance variation during cycles 22 and 23. Adv. Space Res. 29, 1957–1962 (2002)ADSCrossRefGoogle Scholar
  70. L. Floyd, G. Rottman, M. Deland, J. Pap, 11 years of solar uv irradiance measurements from UARS, in Solar Variability as an Input to the Earth’s Environment, ed. by A. Wilson. ESA SP-535, pp. 195–203 (2003)Google Scholar
  71. L. Floyd, J. Newmark, J. Cook, L. Herring, D. McMullin, Solar euv and uv spectral irradiances and solar indices. J. Atmos. Sol. Terr. Phys. 67, 3–15 (2005). doi:10.1016/j.jastp.2004.07.013ADSCrossRefGoogle Scholar
  72. P.C. Frisch, M. Bzowski, E. Grün, V. Izmodenov, H. Krüger, J.L. Linsky, D.J. McComas, E. Möbius, S. Redfield, N. Schwadron, R. Shelton, J.D. Slavin, B.E. Wood, The galactic environment of the sun: interstellar material inside and outside of the heliosphere. Space Sci. Rev. 146, 235–273 (2009). doi:10.1007/s11214-009-9502-0ADSCrossRefGoogle Scholar
  73. P.C. Frisch, S. Redfield, J.D. Slavin, The interstellar medium surrounding the sun. Ann. Rev. Astron. Astrophys. 49, 237–279 (2011). doi:10.1146/annurev-astro-081710-102613ADSCrossRefGoogle Scholar
  74. K. Fujiki, M. Kojima, M. Tokumaru, T. Ohmi, A. Yokobe, K. Hayashi, Solar cycle dependence of high-latitude solar wind, in Solar Wind Ten, ed. by M. Velli, R. Bruno, F. Malara, B. Bucci. American Institute of Physics Conference Series, vol. 679 (American Institute of Physics, Woodbury, New York, 2003a), pp. 141–143. doi:10.1063/1.1618561Google Scholar
  75. K. Fujiki, M. Kojima, M. Tokumaru, T. Ohmi, A. Yokobe, K. Hayashi, D.J. McComas, H.A. Elliott, Solar wind velocity structure around the solar maximum observed by interplanetary scintillation, in Solar Wind Ten, ed. by M. Velli, R. Bruno, F. Malara, B. Bucci. American Institute of Physics Conference Series, vol 679 (American Institute of Physics, Woodbury, New York, 2003b) pp. 226–229. doi:10.1063/1.1618583Google Scholar
  76. K. Fujiki, M. Kojima, M. Tokumaru, T. Ohmi, A. Yokobe, K. Hayashi, D.J. McComas, H.A. Elliott, How did the solar wind structure change around the solar maximum? from interplanetary scintillation observation. Ann. Geophys. 21, 1257–1261 (2003c). doi:10.5194/angeo-21-1257-2003ADSCrossRefGoogle Scholar
  77. G. Gloeckler, J. Geiss, Heliospheric and interstellar phenomena deduced from pickup ion observations. Space Sci. Rev. 97, 169–181 (2001)ADSCrossRefGoogle Scholar
  78. G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J.C. Cain, J. Fisher, L.A. Fisk, A.B. Galvin, F. Gliem, D.C. Hamilton, The solar wind ion composition spectrometer. Astron. Astrophys. Supp. 92, 267–289 (1992)ADSGoogle Scholar
  79. G. Gloeckler, J. Geiss, H. Balsinger, L.A. Fisk, A.B. Galvin, F.M. Ipavich, K.W. Ogilvie, R. von Steiger, B. Wilken, Detection of interstellar pickup hydrogen in the solar system. Science 261, 70–73 (1993)ADSCrossRefGoogle Scholar
  80. G. Gloeckler, E. Möbius, J. Geiss, M. Bzowksi, S. Chalov, H.-J. Fahr, D.R. McMullin, H. Noda, M. Oka, D. Ruciński, R. Skoug, T. Terasawa, R. von Steiger, A. Yamazaki, T. Zurbuchen, Observations of the helium focusing cone with pickup ions. Astron. Astrophys. 426, 845–854 (2004)ADSCrossRefGoogle Scholar
  81. K. Gringauz, V. Bezrukih, V. Ozerov, R. Ribchinsky, A study of the interplanetary ionized gas, high-energy electrons and corpuscular radiation from the sun by means of hte three electrode trap for charged particles on the second soviet cosmic rocket. Sov. Phys. Doklady 5, 361 (1960)ADSGoogle Scholar
  82. M.A. Gruntman, Neutral solar wind properties: advance warning of major geomagnetic storms. J. Geophys. Res. 99, 19213–19227 (1994)ADSCrossRefGoogle Scholar
  83. J.K. Harmon, Scintillation studies of density microstructure in the solar wind plasma. Dissertation, University of California, San Diego, 1975Google Scholar
  84. K.L. Harvey, F. Recely, Polar coronal holes during cycles 22 and 23. Solar Phys. 211, 31–52 (2002)ADSCrossRefGoogle Scholar
  85. K. Hayashi, M. Kojima, M. Tokumaru, K. Fujiki, MHD tomography using interplanetary scintillation measurement. J. Geophys. Res. 108, 1102 (2003). doi:10.1029/2002JA009567CrossRefGoogle Scholar
  86. D.F. Heath, B.M. Schlesinger, The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res. 91, 8672–8682 (1986). doi:10.1029/JD091iD08p08672ADSCrossRefGoogle Scholar
  87. A. Hewish, M.D. Symonds, Radio investigation of the solar plasma. Planet. Space Sci. 17, 313 (1969). doi:10.1016/0032-0633(69)90064-6ADSCrossRefGoogle Scholar
  88. A. Hewish, P.F. Scott, D. Wills, Interplanetary scintillation of small diameter radio sources. Nature 203, 1214–1217 (1964). doi:10.1038/2031214a0ADSCrossRefGoogle Scholar
  89. H.E. Hinteregger, K. Fukui, B.R. Gilson, Observational, reference and model data on solar euv, from measurements on AE-E. Geophys. Res. Lett. 8, 1147–1150 (1981). doi:10.1029/GL008i011p01147ADSCrossRefGoogle Scholar
  90. Z. Houminer, Radio source scintillation—evidence of plasma streams corotating about the sun. Nature 231, 165 (1971)ADSGoogle Scholar
  91. D. Hovestadt, M. Hilchenbach, A. Bürgi, B. Klecker, P. Laeverenz, M. Scholer, H. Grünwaldt, W.I. Axford, S. Livi, E. Marsch, B. Wilken, H.P. Winterhoff, F.M. Ipavich, P. Bedini, M.A. Coplan, A.B. Galvin, G. Gloeckler, P. Bochsler, H. Balsiger, J. Fischer, J. Geiss, R. Kallenbach, P. Wurz, K.-U. Reiche, F. Gliem, D.L. Judge, H.S. Ogawa, K.C. Hsieh, E. Möbius, M.A. Lee, G.G. Managadze, M.I. Verigin, M. Neugebauer, CELIAS—charge, element and isotope analysis system for SOHO. Solar Phys. 162, 441–481 (1995). doi:10.1007/BF00733436ADSCrossRefGoogle Scholar
  92. A.J. Hundhausen, J.R. Asbridge, S.J.B.H.E. Gilbert, I.B. Strong, Vela 3 satellite observations of solar wind ions. J. Geophys. Res. 72, 1979 (1967). doi:10.1029/JZ072i007p01979Google Scholar
  93. T. Isobe, E.D. Feigelson, M.G. Akritas, G.J. Babu, Linear regression in astronomy. Astrophys. J. 364, 104–113 (1990). doi:10.1086/169390ADSCrossRefGoogle Scholar
  94. K. Issautier, Diagnostics of the solar wind plasma, in Turbulence in Space Plasmas, ed. by P. Cargill, L. Vlahos. Lecture Notes in Physics, vol. 778 (Springer, Berlin, 2009), pp. 223–246Google Scholar
  95. K. Issautier, N. Meyer-Vernet, M. Moncuquet, S. Hoang, Solar wind radial and latitudinal structure—electron density and core temperature from Ulysses thermal noise spectroscopy. J. Geophys. Res. 103, 1969–1979 (1998)ADSCrossRefGoogle Scholar
  96. K. Issautier, R.M. Skoug, J.T. Gosling, S.P. Gary, D.J. McComas, Solar wind plasma parameters on Ulysses: detailed comparison between the urap and swoops experiments. J. Geophys. Res. 106, 15665–15676 (2001). doi:10.1029/2000JA000412ADSCrossRefGoogle Scholar
  97. V.V. Izmodenov, V.B. Baranov, Modern multi-component models of the heliospheric interface, in The Physics of the Heliospheric Boundaries, ed. by V.V. Izmodenov, R. Kallenbach. ISSI Scientific Report Series, SR-005, pp. 67–136 (2006)Google Scholar
  98. V.V. Izmodenov, Y.G. Malama, A.P. Kalinin, M. Gruntman, R. Lallement, I.P. Rodionova, Hot neutral H in the heliosphere: elastic H-H, H-p collisions. Astrophys. Space Sci. 274, 71–76 (2000). doi:10.1023/A:1026531519864ADSCrossRefGoogle Scholar
  99. V.V. Izmodenov, D.B. Alexashov, S.V. Chalov, O.A. Katushkina, Y.G. Malama, E.A. Provornikova, Kinetic-gasdynamic modeling of the heliospheric interface: global structure, interstellar atoms and heliospheric enas. Space Sci. Rev. 146, 329–351 (2009). doi:10.1007/s11214-009-9528-3ADSCrossRefGoogle Scholar
  100. V.V. Izmodenov, O.A. Katushkina, E. Quémerais, M. Bzowski, Distribution of interstellar H atoms in the heliosphere and backscattered solar Lyman-α, in Cross-Calibration of Far uv Spectra of Solar System Objects and the Heliosphere, ed. by E. Quémerais, M. Snow, R.M. Bonnet. ISSI Scientific Report Series, SR-013 (2013) (this volume)Google Scholar
  101. B.V. Jackson, P.L. Hick, M. Kojima, A. Yokobe, Heliospheric tomography using interplanetary scintillation observations. Adv. Space Res. 20, 23–26 (1997). doi:10.1016/S0273-1177(97)00474-2ADSCrossRefGoogle Scholar
  102. B.V. Jackson, P.L. Hick, M. Kojima, A. Yokobe, Heliospheric tomography using interplanetary scintillation observations. i. combined nagoya and cambridge data. J. Geophys. Res. 103, 12049–12067 (1998)Google Scholar
  103. D.L. Judge, D.R. McMullin, H.S. Ogawa, D. Hovestadt, B. Klecker, M. Hilchenbach, E. Möbius, L.R. Canfield, R.E. Vest, R. Watts, C. Tarrio, M. Kuehne, P. Wurz, First solar euv irradiances obtained from SOHO by the CELIAS/SEM. Solar Phys. 177, 161–173 (1998)ADSCrossRefGoogle Scholar
  104. J.C. Kasper, Solar wind plasma: kinetic properties and micro-instabilities. Dissertation, Massachusetts Institute of Technology, Cambridge, 2002Google Scholar
  105. J.C. Kasper, A.J. Lazarus, J.T. Steinberg, K.W. Ogilvie, A. Szabo, Physics-based tests to identify the accuracy of solar wind ion measurements: a case study with the wind faraday cups. J. Geophys. Res. 111, A03105 (2006). doi:10.1029/2005JA011442ADSCrossRefGoogle Scholar
  106. J.C. Kasper, M.L. Stevens, K.E. Korreck, B.A. Maruca, K.K. Kiefer, N.A. Schwadron, S.T. Lepri, Evolution of the relationships between helium abundance, minor ion charge state, and solar wind speed over the solar cycle. Astrophys. J. 745, 162 (2012). doi:10.1088/0004-637X/745/2/162ADSCrossRefGoogle Scholar
  107. O.A. Katushkina, V.V. Izmodenov, Effect of the heliospheric interface on the distribution of interstellar hydrogen atom inside the heliosphere. Astron. Lett. 36, 297–306 (2010). doi:10.1134/S1063773710040080ADSCrossRefGoogle Scholar
  108. J.H. King, N.E. Papitashvili, Solar wind spatial scales in and comparisons of hourly wind and acd plasma and magnetic field data. J. Geophys. Res. 110, 2104–2111 (2005). doi:10.1029/2004JA010649CrossRefGoogle Scholar
  109. D. Kiselman, T. Pereira, B. Gustafsson, M. Asplund, J. Meléndez, K. Langhans, Is the solar spectrum latitude dependent? an investigation with SST/TRIPPEL. Astron. Astrophys. 535, A18 (2011)CrossRefGoogle Scholar
  110. M. Kojima, T. Kakinuma, Solar cycle evolution of solar wind speed structure between 1973 and 1985 observed with the interplanetary scintillation method. J. Geophys. Res. 92, 7269–7279 (1987). doi:10.1029/JA092iA07p07269ADSCrossRefGoogle Scholar
  111. M. Kojima, T. Kakinuma, Solar cycle dependence of global distribution of solar wind speed. Space Sci. Rev. 53, 173–222 (1990). doi:10.1007/BF00212754ADSCrossRefGoogle Scholar
  112. M. Kojima, M. Tokumaru, H. Watanabe, A. Yokobe, K. Asai, B.V. Jackson, P.L. Hick, Heliospheric tomography using interplanetary scintillation observations. 2. latitude and heliocentric distance dependence of solar wind structure at 0.1-1 au. J. Geophys. Res. 103, 1981–1989 (1998)Google Scholar
  113. M. Kojima, K. Fujiki, T. Ohmi, M. Tokumaru, A. Yokobe, K. Hakamada, The highest solar wind velocity in a polar region estimated from IPS tomography analysis. Space Sci. Rev. 87, 237–239 (1999). doi:10.1023/A:1005108820106ADSCrossRefGoogle Scholar
  114. M. Kojima, K. Fujiki, T. Ohmi, M. Tokumaru, A. Yokobe, K. Hakamada, Latitudinal velocity structures up to the solar poles estimated from interplanetary scintillation tomography analysis. J. Geophys. Res. 106, 15677–15686 (2001)ADSCrossRefGoogle Scholar
  115. M. Kojima, M. Tokumaru, K. Fujiki, K. Hayashi, B.V. Jackson, IPS tomographic observations of 3d solar wind structure. Astron. Astrophys. Trans. 26, 467–476 (2007)ADSCrossRefGoogle Scholar
  116. M. Kretzschmar, J. Lilensten, J. Aboudarham, Retrieving the solar euv spectral irradiance from the observation of 6 lines. Adv. Space Res. 37, 341–346 (2006). doi:10.1016/j.asr.2005.02.029ADSCrossRefGoogle Scholar
  117. S. Kumar, A.L. Broadfoot, Evidence from mariner 10 of solar wind flux depletion at high ecliptic latitudes. Astron. Astrophys. 69, L5-L8 (1978).ADSGoogle Scholar
  118. S. Kumar, A.L. Broadfoot, Signatures of solar wind latitudinal structure in interplanetary Lyman-α emissions: mariner 10 observations. Astrophys. J. 228, 302–311 (1979)ADSCrossRefGoogle Scholar
  119. E. Kyrölä, T. Summanen, P. Råback, Solar cycle and interplanetary hydrogen. Astron. Astrophys. 288, 299–314 (1994)ADSGoogle Scholar
  120. E. Kyrölä, T. Summanen, T. Mäkinen, E. Quémerais, J.-L. Bertaux, R. Lallement, J. Costa, Preliminary retrieval of solar wind anisotropies / SOHO observations. J. Geophys. Res. 103, 14523–14538 (1998)ADSCrossRefGoogle Scholar
  121. R. Lallement, A.I. Stewart, Out-of-ecliptic lyman-alpha observations with Pioneer-Venus: solar wind anisotropy degree in 1986. Astron. Astrophys. 227, 600–608 (1990)ADSGoogle Scholar
  122. R. Lallement, J.-L. Bertaux, F. Dalaudier, Interplanetary lyman α spectral profiles and intensities for both repulsive and attractive solar force fields: predicted absorption pattern by a hydrogen cell. Astron. Astrophys. 150, 21–32 (1985a)ADSGoogle Scholar
  123. R. Lallement, J.-L. Bertaux, V.G. Kurt, Solar wind decrease at high heliographic latitudes detected from prognoz interplanetary lyman alpha mapping. J. Geophys. Res. 90, 1413–1420 (1985b)ADSCrossRefGoogle Scholar
  124. R. Lallement, T.E. Holzer, R.H. Munro, Solar wind expansion in a polar coronal hole: inferences from coronal white light and interplanetary lyman alpha observations. J. Geophys. Res. 91, 6751–6759 (1986)ADSCrossRefGoogle Scholar
  125. R. Lallement, E. Quémerais, P. Lamy, J.L. Bertaux, S. Ferron, W. Schmidt, The solar wind as seen by SOHO/SWAN since 1996: comparison with SOHO/LASCO C2 coronal densities. In Proceedings of SOHO 23 Workshop, ed. by S. Cranmer, T. Hoeksma, J. Kohl. ASP Conference Series, vol. 428 (2010), pp. 253–258Google Scholar
  126. A.J. Lazarus, K. Paularena, A comparison of solar wind parameters from experiments on the IMP 8 and Wind spacecraft. In Measurement Techniques in Space Plasmas, ed. by E. Borovsky, F. Pfaff, T. Young. AGU Geophysical Monograph Series, vol. 102 (1998), pp. 85–90Google Scholar
  127. G. Le Chat, K. Issautier, N. Meyer-Vernet, I. Zouganelis, M. Moncuquet, S. Hoang, Quasi-thermal noise spectroscopy: preliminary comparison between kappa and sum of two Maxwellian distributions, in Twelfth International Solar Wind Conference, vol. 1216, pp. 316–319 (2010). doi:10.1063/1.3395864Google Scholar
  128. G. Le Chat, K. Issautier, N. Meyer-Vernet, S. Hoang, Large-scale variation of solar wind electron properties from quasi-thermal noise spectroscopy: Ulysses measurements. Solar Phys. 271, 141–148 (2011). doi:10.1007/s11207-011-9797-3ADSCrossRefGoogle Scholar
  129. J.L. Lean, H.P. Warren, J.T. Mariska, J. Bishop, A new model of solar euv irradiance variability 2. comparisons with empirical models and observations and implications for space weather. J. Geophys. Res. 108, 1059 (2003). doi:10.1029/2001JA009238Google Scholar
  130. J.L. Lean, T.N. Woods, F.G. Eparvier, R.R. Meier, D.J. Strickland, J.T. Correira, J.S. Evans, Solar extreme ultraviolet irradiance: present, past, and future. J. Geophys. Res. 116, A01102 (2011). doi:10.1029/2010JA015901ADSCrossRefGoogle Scholar
  131. M.A. Lee, H.J. Fahr, H. Kucharek, E. Möbius, C. Prested, N.A. Schwadron, P. Wu, Physical processes in the outer heliosphere. Space Sci. Rev. 146, 275–294 (2009). doi:10.1007/s11214-009-9522-9ADSCrossRefGoogle Scholar
  132. P. Lemaire, J. Charra, A. Jouchoux, A. Vidal-Madjar, G.E. Artzner, J.C. Vial, R.M. Bonnet, A. Skumanich, Calibrated full disk solar H I Lyman-alpha and Lyman-beta profiles. Astrophys. J. Lett. 223, L55–L58 (1978). doi:10.1086/182727ADSCrossRefGoogle Scholar
  133. P. Lemaire, C. Emerich, W. Curdt, U. Schühle, K. Wilhelm, Solar HI Lyman α full disk profile obtained with the SUMER/SOHO spectrometer. Astron. Astrophys. 334, 1095–1098 (1998)ADSGoogle Scholar
  134. P.L. Lemaire, C. Emerich, J.-C. Vial, W. Curdt, U. Schühle, K. Wilhelm, Variation of the full sun hydrogen lyman α and \(\beta \) profiles with the activity cycle, in ESSP A-508: From solar min to max: half a solar cycle with SOHO, 2002, pp. 219–222Google Scholar
  135. P. Lemaire, C. Emerich, J.-C. Vial, W. Curdt, U. Schühle, K. Wilhelm, Variation of the full sun hydrogen Lyman profiles through solar cycle 23. Adv. Space Res. 35, 384–387 (2005)ADSCrossRefGoogle Scholar
  136. P.C. Liewer, B.E. Goldstein, N. Omidi, Hybrid simulations of the effects of interstellar pickup hydrogen on the solar wind termination shock. J. Geophys. Res. 981, 15211–15220 (1993). doi:10.1029/93JA01172ADSCrossRefGoogle Scholar
  137. B.G. Lindsay, R.F. Stebbings, Charge transfer cross sections for energetic neutral atom data analysis. J. Geophys. Res. 110, A12213 (2005). doi:10.1029/2005JA011298ADSCrossRefGoogle Scholar
  138. W. Lotz, An empirical formula for the electron-impact ionization cross-section. Zeitschrift f. Phys. 206, 205–211 (1967a)ADSCrossRefGoogle Scholar
  139. W. Lotz, Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions. Ap. J. Suppl. 14, 207–238 (1967b)ADSCrossRefGoogle Scholar
  140. E.F. Lyon, H.S. Bridge, J.H. Binsack, Explorer 35 plasma measurements in the vicinity of the moon. J. Geophys. Res. 72, 6113–6117 (1967). doi:10.1029/JZ072i023p06113ADSCrossRefGoogle Scholar
  141. E.F. Lyon, A. Egidi, G. Pizella, H.S. Bridge, J.S. Binsack, R. Baker, R. Butler, Plasma measurements on Explorer 33 (I) interplanetary region. Space Research, VIII, 99 (1968)Google Scholar
  142. L.J. Maher, B.A. Tinsley, Atomic hydrogen escape rate due to charge exchange with hot plasmaspheric ions. J. Geophys. Res. 82, 689–695 (1977)ADSCrossRefGoogle Scholar
  143. M. Maksimovic, V. Pierrard, P. Riley, Ulysses distributions fitted with Kappa functions. Geophys. Res. Lett. 24, 1151–1154 (1997). doi:10.1029/97GL00992ADSCrossRefGoogle Scholar
  144. M. Maksimovic, S.P. Gary, R.M. Skoug, Solar wind electron suprathermal strength and temperature gradients: Ulysses observations. J. Geophys. Res. 105, 18337–18350 (2000)ADSCrossRefGoogle Scholar
  145. M. Maksimovic, I. Zouganelis, J.-Y. Chaufray, K. Issautier, E.E. Scime, J.E. Littleton, E. Marsch, D.J. McComas, C. Salem, R.P. Lin, H. Elliott, Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res. 110, A9104 (2005). doi:10.1029/2005JA011119Google Scholar
  146. Y. Malama, V.V. Izmodenov, S.V. Chalov, Modeling of the heliospheric interface: multi-component nature of the heliospheric plasma. Astron. Astrophys. 445, 693–701 (2006)ADSCrossRefGoogle Scholar
  147. P.K. Manoharan, Three-dimensional structure of the solar wind: Variation of density with the solar cycle. Sol. Phys. 148, 153–167 (1993). doi:10.1007/BF00675541ADSCrossRefGoogle Scholar
  148. R.G. Marsden, E.J. Smith, Ulysses: a summary of the first high-latitude survey. Adv. Space Res. 19, (6)825–(6)834 (1997)Google Scholar
  149. D.J. McComas, S. J. Bame, P. Barker, W. C. Feldman, J. L. Phillips, P. Riley, J.W. Griffee, Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci. Rev. 86, 563–612 (1998a)ADSCrossRefGoogle Scholar
  150. D.J. McComas, S.J. Bame, B.L. Barraclough, W.C. Feldman, W.C. Funsten, J.T. Gosling, P. Riley, R. Skoug, Ulysses’ return to the slow solar wind. Geophys. Res. Lett. 25(1), 1-4 (1998)ADSCrossRefGoogle Scholar
  151. D.J. McComas, H.O. Funsten, J.T. Gosling, W.R. Pryor, Ulysses measurements of variations in the solar wind – interstellar hydrogen charge exchange rate. Geophys. Res. Lett. 26, 2701–2704 (1999)ADSCrossRefGoogle Scholar
  152. D.J. McComas, B.L. Barraclough, H.O. Funsten, J.T. Gosling, E. Santiago-Muñoz, B.E. Goldstein, M. Neugebauer, P. Riley, A. Balogh, Solar wind observations over Ulysses first full polar orbit. J. Geophys. Res. 105, 10419–10433 (2000a)ADSCrossRefGoogle Scholar
  153. D.J. McComas, J.T. Gosling, R.M. Skoug, Ulysses observations of the irregularly structured mid-latitude solar wind during the approach to solar maximum. Geophys. Res. Lett. 27, 2437–2440 (2000b)ADSCrossRefGoogle Scholar
  154. D.J. McComas, H.A. Elliot, R. von Steiger, Solar wind from high-latitude coronal holes at solar maximum. Geophys. Res. Lett. 29, 1314 (2002a). doi:10.1029/2001GL013940ADSCrossRefGoogle Scholar
  155. D.J. McComas, H.A. Elliott, J.T. Gosling, D.B. Reisenfeld, R.M. Skoug, B.E. Goldstein, M. Neugebauer, A. Balogh, Ulysses second fast-latitude scan: Complexity near solar maximum and the reformation of polar coronal holes. Geophys. Res. Lett. 29, 1290 (2002b). doi:10.1029/2001GL014164ADSCrossRefGoogle Scholar
  156. D.J. McComas, H.A. Elliot, N.A. Schwadron, J.T. Gosling, R.M. Skoug, B.E. Goldstein, The three-dimensional solar wind around solar maximum, Geophys. Res. Lett. 30, 24–1, (2003). doi:10.1029/2003GL017136CrossRefGoogle Scholar
  157. D.J. McComas, F. Allegrini, L. Bartolone, P. Bochsler, M. Bzowski, M. Collier, H. Fahr, H. Fichtner, P. Frisch, H. Funsten, S. Fuselier, G. Gloeckler, M. Gruntman, V. Izmodenov, P. Knappenberger, M. Lee, S. Livi, D. Mitchell, E. Möbius, T. Moore, S. Pope, D. Reisenfeld, E. Roelof, H. Runge, J. Scherrer, N. Schwadron, R. Tyler, M. Wieser, M. Witte, P. Wurz, G. Zank, The Interstellar Boundary Explorer (IBEX): Update at the end of phase B, in Physics of the Inner Heliosheath, ed. by J. Heerikhuisen, V. Florinski, G.P. Zank, N.V. Pogorelov. American Institute of Physics Conference Series, vol. 858 (American Institute of Physics, Woodbury, New York, 2006), pp. 241–250Google Scholar
  158. D.J. McComas, R.W. Ebert, H.A. Elliot, B.E. Goldstein, J.T. Gosling, N.A. Schwadron, R.M. Skoug, Weaker solar wind from the polar coronal holes and the whole sun, Geophys. Res. Lett. 35, L18103 (2008). doi:10.1029/2008GL034896ADSCrossRefGoogle Scholar
  159. D.J. McComas, F. Allegrini, P. Bochsler, M. Bzowski, E.R. Christian, G.B. Crew, R. DeMajistre, H. Fahr, H. Fichtner, P.C. Frisch, H.O. Funsten, S.A. Fuselier, G. Gloeckler, M. Gruntman, J. Heerikhuisen, V. Izmodenov, P. Janzen, P. Knappenberger, S. Krimigis, H. Kucharek, M. Lee, G. Livadiotis, S. Livi, R.J. MacDowall, D. Mitchell, E. Möbius, T. Moore, N.V. Pogorelov, D. Reisenfeld, E. Roelof, L. Saul, N.A. Schwadron, P.W. Valek, R. Vanderspek, P. Wurz, G.P. Zank, Global observations of the interstellar interaction from the Interstellar Boundary Explorer (IBEX). Science 326, 959–962 (2009a). doi:10.1126/science.1180906ADSCrossRefGoogle Scholar
  160. D.J. McComas, F. Allegrini, P. Bochsler, M. Bzowski, M. Collier, H. Fahr, H. Fichtner, P. Frisch, H.O. Funsten, S.A. Fuselier, G. Gloeckler, M. Gruntman, V. Izmodenov, P. Knappenberger, M. Lee, S. Livi, D. Mitchell, E. Möbius, T. Moore, S. Pope, D. Reisenfeld, E. Roelof, J. Scherrer, N. Schwadron, R. Tyler, M. Wieser, M. Witte, P. Wurz, G. Zank, IBEX - Interstellar Boundary Explorer, Space Sci. Rev. 146, 11–33 (2009b). doi:10.1007/s11214-009-9499-4ADSCrossRefGoogle Scholar
  161. E. Möbius, D. Hovestadt, B. Klecker, M. Scholer, G. Gloeckler, Direct observation of He+ pick-up ions of interstellar origin in the solar wind. Nature 318, 426–429 (1985)ADSCrossRefGoogle Scholar
  162. E. Möbius, B. Klecker, D. Hovestadt, M. Scholer, Interaction of interstellar pick-up ions with the solar wind. Astrophys. Space Sci. 144, 487–505 (1988)ADSGoogle Scholar
  163. M. Neugebauer, Initial deceleration of solar wind positive ions in the earth’s bow shock. J. Geophys. Res. 75, 717–733 (1970)ADSCrossRefGoogle Scholar
  164. M. Neugebauer, C.W. Snyder, Solar plasma experiment. Science 138, 1095–1097 (1962). doi:10.1029/JA075i004p00717ADSCrossRefGoogle Scholar
  165. H.S. Ogawa, C.Y.R. Wu, P. Gangopadhyay, D.L. Judge, Solar photoionization as a loss mechanism of neutral interstellar hydrogen in interplanetary space. J. Geophys. Res. 100, 3455–3462 (1995)ADSCrossRefGoogle Scholar
  166. K.W. Ogilvie, L.F. Burlaga, T.D. Wilkerson, Plasma observations on Explorer 34. J. Geophys. Res. 73, 6809–6824 (1968). doi:10.1029/JA073i021p06809ADSCrossRefGoogle Scholar
  167. T. Ohmi, M. Kojima, A. Yokobe, M. Tokumaru, K. Fujiki, K. Hakamada, Polar low-speed solar wind at the solar activity maximum. J. Geophys. Res. 106, 24923–24936 (2001). doi:10.1029/2001JA900094ADSCrossRefGoogle Scholar
  168. T. Ohmi, M. Kojima, K. Fujiki, M. Tokumaru, K. Hayashi, K. Hakamada, Polar low-speed solar wind reappeared at the solar activity maximum of cycle 23. Geophys. Res. Lett. 30, 1409 (2003). doi:10.1029/2002GL016347ADSCrossRefGoogle Scholar
  169. R. Osterbart, H.-J. Fahr, A Boltzmann-kinetic approach to describe entrance of neutral interstellar hydrogen into the heliosphere. Astron. Astrophys. 264, 260–269 (1992)ADSGoogle Scholar
  170. S.P. Owocki, T.E. Holzer, A.J. Hundhausen, The solar wind ionization state as a coronal temperature diagnostic. Astrophys. J. 275, 354–366 (1983)ADSCrossRefGoogle Scholar
  171. E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958)ADSCrossRefGoogle Scholar
  172. J.L. Phillips, S.J. Bame, A. Barnes, B.L. Barrcalough, W.C. Feldman, B.E. Goldstein, J.T. Gosling, G.W. Hoogveen, D.J. McComas, M. Neugebauer, S.T. Suess, Ulysses solar wind plasma observations from pole to pole. Geophys. Res. Lett. 22, 3301–3304 (1995a)ADSCrossRefGoogle Scholar
  173. J.L. Phillips, S.J. Bame, W.C. Feldman, J.T. Gosling, C.M. Hammond, D.J. McComas, B.E. Goldstein, M. Neugebauer, Ulysses solar wind plasma observations during the declining phase of solar cycle 22. Adv. Space Res. 16, (9)85–(9)94 (1995b)Google Scholar
  174. W.G. Pilipp, K.-H. Muehlhaeuser, H. Miggenrieder, M.D. Montgomery, H. Rosenbauer, Unusual electron distribution functions in the solar wind derived from the HELIOS plasma experiment—double-strahl distributions and distributions with an extremely anisotropic core. J. Geophys. Res. 92, 1093–1101 (1987a)ADSCrossRefGoogle Scholar
  175. W.G. Pilipp, K.-H. Muehlhaeuser, H. Miggenrieder, M.D. Montgomery, H. Rosenbauer, Characteristics of electron velocity distribution functions in the solar wind derived from the HELIOS plasma experiment. J. Geophys. Res. 92, 1075–1092 (1987b)ADSCrossRefGoogle Scholar
  176. W.R. Pryor, J.M. Ajello, C.A. Barth, C.W. Hord, A.I.F. Stewart, K.E. Simmons, W.E. McClintock, B.R. Sandel, D.E. Shemansky, The Galileo and Pioneer Venus ultraviolet spectrometer experiments: solar Lyman-α latitude variation at solar maximum from interplanetary Lyman-α observations. Astrophys. J. 394, 363–377 (1992)ADSCrossRefGoogle Scholar
  177. W.R. Pryor, M. Witte, J.M. Ajello, Interplanetary Lyman α remote sensing with the Ulysses interstellar neutral gas experiment. J. Geophys. Res. 103, 26813–26831 (1998)ADSCrossRefGoogle Scholar
  178. W.R. Pryor, J.M. Ajello, D.J. McComas, M. Witte, W.K. Tobiska, Hydrogen atom lifetimes in the three-dimensional heliosphere over the solar cycle. J. Geophys. Res. 108, 8034 (2003). doi:10.1029/2003JA009878CrossRefGoogle Scholar
  179. E. Quémerais, The interplanetary Lyman-α background, in The Physics of the Heliospheric Boundaries, ed. by V.V. Izmodenov, R. Kallenbach, ISSI Scientific Report Series, SR-005, pp. 283–310 (2006)Google Scholar
  180. E. Quémerais, R. Lallement, S. Ferron, D. Koutroumpa, J.-L. Bertaux, E. Kyrölä, W. Schmidt, Interplanetary hydrogen absolute ionization rates: retrieving the solar wind mass flux latitude and cycle dependence with SWAN/SOHO maps. J. Geophys. Res. 111, 9114–9131 (2006). doi:10.1029/2006JA011711CrossRefGoogle Scholar
  181. P.G. Richards, J.A. Fennelly, D.G. Torr, EUVAC: a solar euv flux model for aeronomic calculations. J. Geophys. Res. 99, 8981–8992 (1994). doi:10.1029/94JA00518ADSCrossRefGoogle Scholar
  182. J.D. Richardson, K.I. Paularena, A.J. Lazarus, J.W. Belcher, Radial evolution of the solar wind from IMP-8 to Voyager 2. Geophys. Res. Lett. 22, 325–328 (1995)ADSCrossRefGoogle Scholar
  183. J.D. Richardson, J.C. Kasper, C. Wang, J.W. Belcher, A.J. Lazarus, Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454, 63–66 (2008a). doi:10.1038/nature07024ADSCrossRefGoogle Scholar
  184. J.D. Richardson, Y. Liu, C. Wang, D.J. McComas, Determining the LIC H density from the solar wind slow down. Astron. Astrophys. 491, 1–5 (2008b). doi:10.1051/0004-6361:20078565ADSCrossRefGoogle Scholar
  185. D. Ruciński, M. Bzowski, Solar cycle dependence of the production of H+ pick-up ions in the inner heliosphere. Adv. Space Res. 16, 121–124 (1995)ADSCrossRefGoogle Scholar
  186. D. Ruciński, H.-J. Fahr, The influence of electron impact ionization on the distribution of interstellar helium in the inner heliosphere: possible consequences for determination of interstellar helium parameters. Astron. Astrophys. 224, 290–298 (1989)ADSGoogle Scholar
  187. D. Ruciński, H.-J. Fahr, Nonthermal ions of interstellar origin at different solar wind conditions. Ann. Geophys. 9, 102–110 (1991)ADSGoogle Scholar
  188. D. Ruciński, M. Bzowski, H.-J. Fahr, Minor helium components co-moving with the solar wind. Astron. Astrophys. 334, 337–354 (1998)ADSGoogle Scholar
  189. C. Salem, J.-M. Bosqued, D.E. Larson, A. Mangeney, M. Maksimovic, C. Perche, R.P. Lin, J.-L. Bougeret, Determination of accurate solar wind electron parameters using particle detectors and radio wave receivers. J. Geophys. Res. 106, 21701–21717 (2001). doi:10.1029/2001JA900031ADSCrossRefGoogle Scholar
  190. C. Salem, S. Hoang, K. Issautier, M. Maksimovic, C. Perche, WIND-Ulysses in-situ thermal noise measurements of solar wind electron density and core temperature at solar maximum and minimum. Adv. Space Res. 32, 491–496 (2003). doi:10.1016/S0273-1177(03)00354-5ADSCrossRefGoogle Scholar
  191. H. Scherer, M. Bzowski, H.-J. Fahr, D. Ruciński, Improved analysis of interplanetary HST-H\(_{\mathrm{Ly}\alpha }\) spectra using time-dependent modelings. Astron. Astrophys. 342, 601–609 (1999)ADSGoogle Scholar
  192. H. Scherer, H.-J. Fahr, M. Bzowski, D. Ruciński, The influence of fluctuations of the solar emission line profile on the Doppler shift of interplanetary H Lyα lines observed by the Hubble-Space-Telescope. Astrophys. Space Sci. 274, 133–141 (2000)ADSCrossRefGoogle Scholar
  193. E.E. Scime, S.J. Bame, W.C. Feldman, S.P. Gary, J.L. Phillips, Regulation of the solar wind electron heat flux from 1 to 5 au JGR 99, 23401–23410 (1994)Google Scholar
  194. G.J. Smith, L.K. Johnson, R.S. Gao, K.A. Smith, R.F. Stebbings, Absolute differential cross sections for electron capture and loss by kilo-electron-volt hydrogen atoms. Phys. Rev. A 44, 5647–5652 (1991)ADSCrossRefGoogle Scholar
  195. J.M. Sokół, M. Bzowski, M. Tokumaru, K. Fujiki, D.J. McComas, Heliolatitude and time variations of solar wind structure from in-situ measurements and interplanetary scintillation observations. Solar Phys. (2012). doi: 10.1007/s11207-012-9993-9.Google Scholar
  196. Š. Štverák, P.M. Trávníček, M. Maksimovic, E. Marsch, A.N. Fazakerley, E.E. Scime, Electron temperature anisotropy constraints in the solar wind. J. Geophys. Res. 113, A03103 (2008). doi:10.1029/2007JA012733ADSCrossRefGoogle Scholar
  197. Š. Štveràk, M. Maksimovic, P.M. Trávníček, E. Marsch, A.N. Fazakerley, E.E. Scime, Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses observations. J. Geophys. Res. 114, A05104 (2009). doi:10.1029/2008JA013883ADSCrossRefGoogle Scholar
  198. T. Summanen, The effect of the time and latitude-dependent solar ionisation rate on the measured Lyman-α-intensity. Astron. Astrophys. 314, 663–671 (1996)ADSGoogle Scholar
  199. T. Summanen, R. Lallement, J.-L. Bertaux, E. Kyrölä, Latitudinal distribution of solar wind as deduced from Lyman alpha measurements: an improved method. J. Geophys. Res. 98, 13215–13224 (1993)ADSCrossRefGoogle Scholar
  200. K.F. Tapping, Recent solar radio astronomy at centimeter wavelengths - the temporal variability of the 10.7-cm flux. J. Geophys. Res. 92, 829–838 (1987). doi:10.1029/JD092iD01p00829Google Scholar
  201. S.T. Tarnopolski, Expected distribution of interstellar deuterium in the heliosphere. Dissertation. Space Research Centre PAS, 2007Google Scholar
  202. S. Tarnopolski, M. Bzowski, Detectability of neutral interstellar deuterium by a forthcoming SMEX mission IBEX. Astron. Astrophys. 483, L35-L38 (2008a). doi:10.1051/0004-6361:200809593ADSCrossRefGoogle Scholar
  203. S. Tarnopolski, M. Bzowski, Neutral interstellar hydrogen in the inner heliosphere under the influence of wavelength-dependent solar radiation pressure. Astron. Astrophys. 493, 207–216 (2008b). doi:10.1051/0004-6361:20077058ADSCrossRefGoogle Scholar
  204. G.E. Thomas, The interstellar wind and its influence on the interplanetary environment. Ann. Rev. Earth Planet. Sci. 6, 173–204 (1978)ADSCrossRefGoogle Scholar
  205. H. Tian, W. Curdt, E. Marsch, U. Schühle, Hydrogen Lyman-α and Lyman-\(\beta \) spectral radiance profiles in the quiet sun. Astron. Astrophys. 504, 239–248 (2009a). doi:10.1051/0004-6361/200811445ADSCrossRefGoogle Scholar
  206. H. Tian, W. Curdt, L. Teriaca, E. Landi, E. Marsch, Solar transition region above sunspots. Astron. Astrophys. 505, 307–318 (2009b). doi:10.1051/0004-6361/200912114ADSCrossRefGoogle Scholar
  207. H. Tian, L. Teriaca, W. Curdt, J.-C. Vial, Hydrogen Ly α and Ly \(\beta \) radiances and profiles in polar coronal holes. Astrophys. J. Lett. 703, L152–L156 (2009c). doi:10.1088/0004-637X/703/2/L152ADSCrossRefGoogle Scholar
  208. W.K. Tobiska, T. Woods, F. Eparvier, R. Viereck, L.E. Floyd, D. Bouwer, G. Rottman, O.R. White, The SOLAR2000 empirical solar irradiance model and forecast tool. J. Atmos. Sol. Terr. Phys. 62, 1233–1250 (2000)ADSCrossRefGoogle Scholar
  209. M. Tokumaru, M. Kojima, K. Fujiki, K. Hayashi, Non-dipolar solar wind structure observed in the cycle 23/24 minimum. Geophys. Res. Lett. 360, L09101 (2009). doi:10.1029/2009GL037461ADSCrossRefGoogle Scholar
  210. M. Tokumaru, M. Kojima, K. Fujiki, Solar cycle evolution of the solar wind speed distribution from 1985 to 2008. J. Geophys. Res. 115, A04102 (2010). doi:10.1029/2009JA014628ADSCrossRefGoogle Scholar
  211. A.V. Usmanov, W.H. Matthaeus, B.A. Breech, M.L. Goldstein, Solar wind modeling with turbulence transport and heating. Astrophys. J. 727, 84 (2011). doi:10.1088/0004-637X/727/2/84ADSCrossRefGoogle Scholar
  212. V. Vasyliunas, G. Siscoe, On the flux and the energy spectrum of interstellar ions in the solar wind. J. Geophys. Res. 81, 1247–1252 (1976)ADSCrossRefGoogle Scholar
  213. D.A. Verner, G.J. Ferland, T.K. Korista, D.G. Yakovlev, Atomic data for astrophysics. ii. new fits for photoionization cross-sections of atoms and ions. Astrophys. J. 465, 487–498 (1996)Google Scholar
  214. I.S. Veselovsky, A.V. Dmitriev, A.V. Suvorova, Algebra and statistics of the solar wind. Cosmic Res. 48, 113–128 (2010). doi:10.1134/S0010952510020012ADSCrossRefGoogle Scholar
  215. A. Vidal-Madjar, Evolution of the solar Lyman alpha flux during four consecutive years. Solar Phys. 40, 69–86 (1975)ADSCrossRefGoogle Scholar
  216. A. Vidal-Madjar, B. Phissamay, The solar L α flux near solar minimum. Solar Phys. 66, 259–271 (1980)ADSCrossRefGoogle Scholar
  217. R.A. Viereck, L.C. Puga, The NOAA Mg II core-to-wing solar index: construction of a 20-year time series of chromospheric variability from multiple satellites. J. Geophys. Res. 104, 9995–10006 (1999). doi:10.1029/1998JA900163ADSCrossRefGoogle Scholar
  218. M.E. Wachowicz, Global model of distribution of ionization states of heavy ions from solar plasma in the heliosphere (in Polish). Dissertation, Space Research Centre PAS, 2006Google Scholar
  219. H.P. Warren, NRLEUV 2, A new model of solar euv irradiance variability. Adv. Space Res. 37, 359–365 (2006). doi:10.1016/j.asr.2005.10.028CrossRefGoogle Scholar
  220. H.P. Warren, J.T. Mariska, J.L. Lean, A new reference spectrum for the euv irradiance of the quiet sun 1. emission measure formulation. J. Geophys. Res. 103, 12077–12090 (1998a). doi:10.1029/98JA00810Google Scholar
  221. H.P. Warren, J.T. Mariska, J.L. Lean, A new reference spectrum for the euv irradiance of the quiet sun 2. comparisons with observations and previous models. J. Geophys. Res. 103, 12091–12102 (1998b). doi:10.1029/98JA00811Google Scholar
  222. H.P. Warren, J.T. Mariska, K. Wilhelm, High-resolution observations of the solar hydrogen Lyman lines in the quiet sun with the SUMER instrument on SOHO. Astrophys. J. Suppl 119, 105–120 (1998c). doi:10.1086/313151ADSCrossRefGoogle Scholar
  223. K.-P. Wenzel, R.G. Marsden, D.E. Page, E.J. Smith, Ulysses: the first high-latitude heliospheric mission. Adv. Space Res. 9, 25–29 (1989). doi:10.1016/0273-1177(89) 90089-6ADSCrossRefGoogle Scholar
  224. T.N. Woods, G.J. Rottman, O.R. White, J. Fontenla, E.H. Avrett, The solar Ly-alpha line profile. Astrophys. J. 442, 898–906 (1995). doi:10.1086/175492ADSCrossRefGoogle Scholar
  225. T.N. Woods, D.K. Prinz, G.J. Rottman, J. London, P.C. Crane, R.P. Cebula, E. Hilsenrath, G.E. Brueckner, M.D. Andrews, O.R. White, M.E. VanHoosier, L.E. Floyd, L.C. Herring, B.G. Knapp, C.K. Pankratz, P.A. Reiser, Validation of the UARS solar ultraviolet irradiances: comparison with the ATLAS 1 and 2 measurements. J. Geophys. Res. 101, 9541–9570 (1996). doi:10.1029/96JD00225ADSCrossRefGoogle Scholar
  226. T.N. Woods, W.K. Tobiska, G.J. Rottman, J.R. Worden, Improved solar Lyman irradiance modeling from 1979 through 1999 based on UARS observations. J. Geophys. Res. 105, 27195–27215 (2000)ADSCrossRefGoogle Scholar
  227. T.N. Woods, F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, D.L. Woodraska, Solar euv experiment (SEE): mission overview and first results. J. Geophys. Res. 110, A01312 (2005). doi:10.1029/2004JA010765ADSCrossRefGoogle Scholar
  228. F.M. Wu, D.L. Judge, Temperature and velocity of the interplanetary gases along solar radii. Astrophys. J. 231, 594–605 (1979)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maciej Bzowski
    • 1
  • Justyna M. Sokół
    • 1
  • Munetoshi Tokumaru
    • 2
  • Kenichi Fujiki
    • 2
  • Eric Quémerais
    • 3
  • Rosine Lallement
    • 3
  • Stéphane Ferron
    • 4
  • Peter Bochsler
    • 5
    • 6
  • David J. McComas
    • 7
    • 8
  1. 1.Space Research CenterPolish Academy of SciencesWarsawPoland
  2. 2.Solar-Terrestrial Environment LaboratoryNagoya UniversityNagoyaJapan
  3. 3.LATMOS-IPSLUniversité Versailles-Saint QuentinGuyancourtFrance
  4. 4.ACRI-STGuyancourtFrance
  5. 5.Space Science Center & Department of PhysicsUniversity of New HampshireDurhamUSA
  6. 6.Physikalisches InstitutUniversity of BernBernSwitzerland
  7. 7.Southwest Research InstituteSan AntonioUSA
  8. 8.University of Texas at San AntonioSan AntonioUSA

Personalised recommendations