Advertisement

Distribution of Interstellar Hydrogen Atoms in the Heliosphere and Backscattered Solar Lyman-α

  • Vladislav V. Izmodenov
  • Olga A. Katushkina
  • Eric Quémerais
  • Maciej Bzowski
Chapter
Part of the ISSI Scientific Report Series book series (ISSI, volume 13)

Abstract

We review the modern concepts of penetration of interstellar atoms of hydrogen into the heliosphere up to 1 AU. Before entering into the heliosphere the atoms penetrate through the region of the solar wind (SW) interaction with the local interstellar medium (LISM). In the interaction region the atoms can exchange charge with both solar wind and interstellar protons disturbed in the SW/LISM interaction region. Charge exchange results in a disturbance of the pristine interstellar atom flow in the interaction region, and, therefore, the parameters of interstellar gas inside the heliosphere are different from their interstellar values. This makes it more difficult to determine local interstellar parameters from measurements of the interstellar atoms inside the heliosphere, but, on the other side, opens possibilities to study the SW/LISM interaction region remotely. This paper overviews the main physical phenomena and modern models of the SW/LISM interaction and presents a state-of-art 3D kinetic model of the interstellar hydrogen gas inside the heliosphere. The distributions of the gas parameters are compared with the distributions obtained in the context of the classical hot model. Quantitative and qualitative differences are discussed. The state-of-art model is employed to calculate spectra of the backscattered Lyman-\(\alpha \) radiation as they would be measured at 1 AU and the zero, first and second moments of the spectra. It is shown that the SW/LISM interaction imprints in the spatial and velocity distribution of the interstellar atoms are revealed in the intensities, line-shifts, and line-widths of the distribution functions. A qualitative comparison of the model results with SOHO/SWAN data are presented.

Keywords

Solar Wind Charge Exchange Termination Shock Velocity Distribution Function Solar Wind Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. J.M. Ajello, A.I. Stewart, G.E. Thomas, A. Graps, Solar cycle study of interplanetary Lyman-alpha variations: Pioneer Venus Orbiter sky background results. Astrophys. J. 317, 964–986 (1987)ADSGoogle Scholar
  2. D.B. Aleksashov, V. Baranov, E. Barsky, A. Myasnikov, An axisymmetric magnetohydrodynamic model for the interaction of the solar wind with the local interstellar medium. Astron. Lett. 26, 743–749 (2000)ADSGoogle Scholar
  3. I.I. Alekseev, A.P. Kropotkin, Passage of energetic particles through a magnetohydrodynamic discontinuity surface. Geomagn. Aeron. 10, 755 (1971)ADSGoogle Scholar
  4. D.B. Alexashov, V.V. Izmodenov, M. Opher, Effects of the helisopheric and interstellar magnetic field on the heliospheric interface. 37th COSPAR Scientific Assembly D13-0015-08, P025-TueWed (poster) (2008)Google Scholar
  5. W.I. Axford, The interaction of the solar wind with the interstellar medium. In Solar wind, ed. by C.P. Sonett, P.J. Coleman, J.M. Wilcox. (Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington), p. 609 format? (1972)Google Scholar
  6. W.I. Axford, A.J. Dessler, B. Gottlieb, Termination of solar wind and solar magnetic field. Astrophys. J. 137, 1268–1278 (1963)ADSGoogle Scholar
  7. V.B. Baranov, Gasdynamics of the solar wind interaction with the interstellar medium. Space Sci. Rev. 52, 89–120 (1990)ADSGoogle Scholar
  8. V.B. Baranov, The heliosheath as a special case of stellarsheaths and the hydrogen wall as a signature of the heliosheath. Planet. Space Sci. 50, 535–539 (2002)ADSGoogle Scholar
  9. V.B. Baranov, M.K. Ermakov, M.G. Lebedev, A three-component model of solar wind-interstellar medium interaction: some numerical results. Sov. Astron. Lett. 7, 206–209 (1981)ADSGoogle Scholar
  10. V.B. Baranov, V.V. Izmodenov, Y.G. Malama, On the distribution function of H atoms in the problem of the solar wind interaction with the local interstellar medium. J. Geophys. Res. 103, 9575–9586 (1998)ADSGoogle Scholar
  11. V.B. Baranov, K.V. Krasnobaev, A.G. Kulikovksy, Sov. Phys. Dokl. 15, 791 (1971)ADSGoogle Scholar
  12. V.B. Baranov, M.G. Lebedev, Y.G. Malama, The influence of the interface between heliosphere and the local interstellar medium on the penetration of the H-atoms to the solar system. Astrophys. J. 375, 347–351 (1991)ADSGoogle Scholar
  13. V.B. Baranov, Y.G. Malama, Model of the solar wind interaction with the local interstellar medium: numerical solution of self-consistent problem. J. Geophys. Res. 98, 15157–15163 (1993)ADSGoogle Scholar
  14. V.B. Baranov, Y.G. Malama, Axisymmetric self-consistent model of the solar wind interaction with the LISM: basic results and possible ways of development. Space Sci. Rev. 78, 305–316 (1996)ADSGoogle Scholar
  15. V.B. Baranov, N.A. Zaitsev, On the problem of the solar wind interaction with magnetized interstellar plasma. Astron. Astrophys. 304, 631–637 (1995)ADSGoogle Scholar
  16. C.A. Barth, Mariner 6 measurements of the Lyman α sky background. Astrophys. J.Lett. 161, L181–L184 (1970)ADSGoogle Scholar
  17. J.-L. Bertaux, J.E. Blamont, Evidence for a source of an extraterrestrial hydrogen Lyman α emission: the interstellar wind. Astron. Astrophys. 11, 200 (1971)ADSGoogle Scholar
  18. J.-L. Bertaux, R. Lallement, Analysis of interplanetary Lyman α line profile with a hydrogen absorption cell: theory of the Doppler angular spectral scanning method. Astron. Astrophys. 140, 230–242 (1984)ADSGoogle Scholar
  19. J.-L. Bertaux, A. Ammar, J.E. Blamont, OGO-5 determination of the local interstellar wind parameters. Space Res. 12, 1559–1567 (1972)Google Scholar
  20. J.-L. Bertaux, J.E. Blamont, N. Tabarie, W.G. Kurt, M.C. Bourgin, A.S. Smirnov, N.N. Dementeva, Interstellar medium in the vicinity of the sun: a temperature measurement obtained with the Mars-7 interplanetary probe. Astron. Astrophys. 46, 19–29 (1976)ADSGoogle Scholar
  21. J.L. Bertaux, J.E. Blamont, E.N. Mironova, V.G. Kurt, M.C. Bourgin, Temperature measurement of interplanetary interstellar hydrogen. Nature 270, 156–158 (1977)ADSGoogle Scholar
  22. J.-L. Bertaux, E. Quémerais, R. Lallement, E. Kyrölä, W. Schmidt, T. Summanen, J.P. Goutail, M. Berthé, J. Costa, T. Holzer, First results from the SWAN Lyman α solar wind mapper on SOHO. Sol. Phys. 175, 737–770 (1997)ADSGoogle Scholar
  23. J.-L. Bertaux, E. Kyrölä, E. Quémerais, R. Lallement, W. Schmidt, T. Summanen, J. Costa, T. Makinen, SWAN observations of the solar wind latitude distribution and its evolution since launch. Space Sci. Rev. 87, 129–132 (1999)ADSGoogle Scholar
  24. P.W. Blum, H.-J. Fahr, Interaction between interstellar hydrogen and the solar wind. Astron. Astrophys. 4, 280–290 (1970)ADSGoogle Scholar
  25. P.W. Blum, J. Pfleiderer, C. Wulf-Mathies, Neutral gases of interstellar origin in interplanetary space. Planet. Space Sci. 23, 93–105 (1975)ADSGoogle Scholar
  26. P. Blum, P. Gangopadhyay, H.S. Ogawa, D.L. Judge, Solar-driven neutral density waves. Astron. Astrophys. 272, 549–554 (1993)ADSGoogle Scholar
  27. J.C. Brandt, J.W. Chamberlain, Interplanetary gas. I. hydrogen radiation in the night sky. Astrophys. J. 130, 670–682 (1959)Google Scholar
  28. P.C. Brandt, E.C. Roelof, P. Wurz, S. Barabash, D. Bazell, R. DeMajistre, T. Sotirelis, R. Decker, Energetic neutral atom (ENA) imaging of the heliosheath: spectral characteristics and implications for shock acceleration from observations by the neutral particle detector (NPD) on board Venus Express (VEX). American Geophysical Union, Spring Meeting, abstract SH24A-01 (2009)Google Scholar
  29. L.F. Burlaga, N.F. Ness, M.H. Acuña, Crossing the termination shock into the heliosheath: magnetic fields. Science 309, 2027–2029 (2005). doi:10.1126/science.1117542ADSGoogle Scholar
  30. M. Bzowski, Response of the groove in heliospheric Lyman-alpha glow to latitude-dependent ionization rate. Astron. Astrophys. 408, 1155–1164 (2003)ADSGoogle Scholar
  31. M. Bzowski, Survival probability and energy modification of hydrogen energetic neutral atoms on their way from the termination shock to Earth orbit. Astron. Astrophys. 488, 1057–1068 (2008)ADSGoogle Scholar
  32. M. Bzowski, D. Ruciński, Solar cycle modulation of the interstellar hydrogen density distribution in the heliosphere. Space Sci. Rev. 72, 467–470 (1995)ADSGoogle Scholar
  33. M. Bzowski, H.-J. Fahr, D. Ruciński, H. Scherer, Variation of bulk velocity and temperature anisotropy of neutral heliospheric hydrogen during the solar cycle. Astron. Astrophys. 326, 396–411 (1997)ADSGoogle Scholar
  34. M. Bzowski, T. Summanen, D. Ruciński, E. Kyrölä, Response of interplanetary glow to global variations of hydrogen ionization rate and solar Lyman α flux. J. Geophys. Res. 107, CiteID 1101 (2002). doi:10.1029/2001JA000141Google Scholar
  35. M. Bzowski, T. Makinen, E. Kyrölä et al., Latitudinal structure and north-south asymmetry of the solar wind from Lyman-alpha remote sensing by SWAN. Astron. Astrophys. 408, 1165–1177 (2003)ADSGoogle Scholar
  36. M. Bzowski, E. Möbius, S. Tarnopolski et al., Density of neutral interstellar hydrogen at the termination shock from Ulysses pickup ion observations. Astron. Astrophys. 491, 7–19 (2008)ADSGoogle Scholar
  37. S.V. Chalov, H.-J. Fahr, Energetic particles from the outer heliosphere appearing as a secondary pick-up ion component. Astron. Astrophys. 401, L1–L4 (2003)ADSGoogle Scholar
  38. S.V. Chalov, D.B. Alexashov, D. McComas et al., Scatter-free pickup ions beyond the heliopause as a model for the interstellar boundary explorer ribbon. Astrophys. J.Lett. 716, L99–L102 (2010)ADSGoogle Scholar
  39. J. Costa, R. Lallement, E. Quémerais et al., Heliospheric interstellar H temperature from SOHO/SWAN H cell data. Astron. Astrophys. 349, 660–672 (1999)ADSGoogle Scholar
  40. J.M.A. Danby, G.L. Camm, Stat. dynam. accretion Monthly Not. Royal Astron. Soc. 117, 50–71 (1957)Google Scholar
  41. L. Davis Jr., Interplanetary magnetic fields and cosmic rays. Phys. Rev. 100, 1440–1444 (1955). doi:10.1103/PhysRev.100.1440ADSGoogle Scholar
  42. R.B. Decker, S.M. Krimigis, E.C. Roelof et al., Voyager 1 in the foreshock, termination shock, and heliosheath. Science 309, 2020–2024 (2005)ADSGoogle Scholar
  43. H.-J. Fahr, On the influence of the neutral interstellar matter on the upper atmosphere. Astrophys. Space Sci. 2, 474–495 (1968a)ADSGoogle Scholar
  44. H.-J. Fahr, Neutral corpuscular energy flux by charge transfer collisions in the vicinity of the Sun. Astrophys. Space Sci. 2, 496–503 (1968b)ADSGoogle Scholar
  45. H.-J. Fahr, The interplanetary hydrogen cone and its solar cycle variations. Astron. Astrophys. 14, 263–274 (1971)ADSGoogle Scholar
  46. H.-J. Fahr, The extraterrestrial UV-background and the nearby interstellar medium. Space Sci. Rev. 15, 483–540 (1974)ADSGoogle Scholar
  47. H.-J. Fahr, Change of interstellar gas parameters in stellar-wind-dominated astrospheres: the solar case. Astron. Astrophys. 66, 103–117 (1978)ADSGoogle Scholar
  48. W.C. Feldman, J.J. Lange, F. Scherb, Interstellar helium in interplanetary space. In Solar Wind, ed. by C.P. Sonett, P.J. Coleman, J.M. Wilcox. (Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, 1972), p. 668Google Scholar
  49. H.O. Funsten, F. Allegrini, G.B. Crew et al., Structures and spectral variations of the outer heliosphere in IBEX energetic neutral atom maps. Science 326, 964 (2009)ADSGoogle Scholar
  50. S.A. Fuselier, F. Allegrini, H.O. Funsten et al., Width and variation of the ENA flux ribbon observed by the interstellar boundary explorer. Science 326, 962 (2009)ADSGoogle Scholar
  51. K. Gringauz, V. Bezrukih, V. Ozerov, R. Ribchinsky, A study of the interplanetary ionized gas, high-energy electrons and corpuscular radiation from the Sun by means of the three-electrode trap for charged particles on the second soviet cosmic rocket. Sov. Phys. Doklady 5, 361 (1960)ADSGoogle Scholar
  52. M. Gruntman, V.V. Izmodenov, Mass transport in the heliosphere by energetic neutral atoms. J. Geophys. Res. 109, A12108 (2004). doi:10.1029/2004JA010727ADSGoogle Scholar
  53. M. Gruntman, E.C. Roelof, D.G. Mitchell, H.-J. Fahr, H.O. Funsten, D.J. McComas, Energetic neutral atom imaging of the heliospheric boundary region. J. Geophys. Res. 106, 15767–15782 (2001)ADSGoogle Scholar
  54. J. Heerikhuisen, N.V. Pogorelov, An estimate of the nearby interstellar magnetic field using neutral atoms. Astrophys. J. 738, 29 (2011). doi:10.1088/0004-637X/738/1/29ADSGoogle Scholar
  55. M. Hilchenbach, K.C. Hsieh, D. Hovestadt et al., Detection of 55–80 keV hydrogen atoms of heliospheric origin by CELIAS/HSTOF on SOHO. Astrophys. J. 503, 916–922 (1998)ADSGoogle Scholar
  56. M. Hilchenbach, K.C. Hsieh, D. Hovestadt, R. Kallenbach, A. Czechowski, E. Möbius, P. Bochsler, Energetic neutral hydrogen of heliospheric origin observed with SOHO/CELIAS at 1 AU. In The Outer Heliosphere: The Next Frontiers, ed. by K. Scherer, H. Fichtner, H.J. Fahr, E. Marsch. (Pergamon, Elmsford, 2000), pp. 273–276Google Scholar
  57. A.J. Hundhausen, Interplanetary neutral hydrogen and the radius of the heliosphere. Planet. Space Sci. 16, 783–793 (1968)ADSGoogle Scholar
  58. P.A. Isenberg, Evolution of interstellar pickup ions in the solar wind. J. Geophys. Res. 92, 1067–1073 (1987)ADSGoogle Scholar
  59. V.V. Izmodenov, Physics and gasdynamics of the heliospheric interface. Astrophys. Space Sci. 274, 55–69 (2000)ADSGoogle Scholar
  60. V.V. Izmodenov, Velocity distribution of interstellar H atoms in the heliospheric interface. Space Sci. Rev. 97, 385–388 (2001)ADSGoogle Scholar
  61. V.V. Izmodenov, Early concepts of the heliospheric interface: H atoms. In The Physics of the Heliospheric Boundaries, ed. by V.V. Izmodenov, R. Kallenbach. ISSI Scientific Report No. 5 (ESA-ESTEC, Paris, 2006), pp. 45–65Google Scholar
  62. V.V. Izmodenov, Local interstellar parameters as they are inferred from analysis of observations inside the heliosphere. Space Sci. Rev. 143, 139–150 (2009)ADSGoogle Scholar
  63. V.V. Izmodenov, D. Alexashov, A model for the tail region of the heliospheric interface. Astronomy Lett. 29, 58–63 (2003)ADSGoogle Scholar
  64. V.V. Izmodenov, D. Alexashov, Kinetic vs multi-fluid models of H atoms in the heliospheric interface. In Solar Wind 11 / SOHO 16 Connecting Sun and Heliosphere conference, ed. by B. Fleck, T.H. Zurbuchen, H. Lacoste. (ESA SP-592, 2005), p. 355Google Scholar
  65. V.V. Izmodenov, D. Alexashov, Multi-component 3d modeling of the heliospheric interface: effects of interstellar magnetic field. In Physics of the inner heliosheath: Voyager observations, theory, and future prospects. 5th annual IGPP international astrophysics conference. AIP Conference Proceedings, vol. 858 (2006), pp. 14–19Google Scholar
  66. V.V. Izmodenov, Y.G. Malama, A.P. Kalinin et al., Hot neutral H in the heliosphere: elastic H-H, H-p collisions. Astrophys. Space Sci. 274, 71–76 (2000)ADSGoogle Scholar
  67. V.V. Izmodenov, M. Gruntman, Y.G. Malama, Interstellar hydrogen atom distribution function in the outer heliosphere. J. Geophys. Res. 106, 10681 (2001)ADSGoogle Scholar
  68. V.V. Izmodenov, G. Gloeckler, Y.G. Malama, When will Voyager 1 and 2 cross the termination shock? Geophys. Res. Lett. 30, 3–1 (2003). doi:10.1029/2002GL016127Google Scholar
  69. V.V. Izmodenov, D. Alexashov, A. Myasnikov, Direction of the interstellar H atom inflow in the heliosphere: role of the interstellar magnetic field. Astron. Astrophys. 437, L35–L38 (2005)ADSGoogle Scholar
  70. V.V. Izmodenov, Y.G. Malama, M.S. Ruderman, Modeling of the outer heliosphere with the realistic solar cycle. Adv. Space Res. 41, 318–324 (2008)ADSGoogle Scholar
  71. V.V. Izmodenov, Y.G. Malama, M.S. Ruderman et al., Kinetic-gasdynamic modeling of the heliospheric interface. Space Sci. Rev. 146, 329–351 (2009)ADSGoogle Scholar
  72. J.A. Joselyn, T.E. Holzer, The effect of asymmetric solar wind on the Lyman α sky background. J. Geophys. Res. 80, 903–907 (1975)ADSGoogle Scholar
  73. O.A. Katushkina, V.V. Izmodenov, Effect of the heliospheric interface on the distribution of interstellar hydrogen atom inside the heliosphere. Astronomy Lett. 36, 297–300 (2010)ADSGoogle Scholar
  74. O.A. Katushkina, V.V. Izmodenov, The influence of effects on the heliospheric interface on parameters of backscattered solar Lα radiation measured at the Earth’s orbit. Cosmic Res. 50, 141–151 (2012)ADSGoogle Scholar
  75. S.M. Krimigis, D.G. Mitchell, E.C. Roelof, P.C. Brandt, Energetic neutral atoms (ENA) from the termination shock/heliosheath? the view from 10AU. Paper presented at Voyagers in the heliosheath: observations, models, and plasmas physics Kauai, Hawaii, 9–14 Jan 2009Google Scholar
  76. S.M. Krimigis, E.C. Roelof, R.B. Decker, M.E. Hill, Zero outward flow velocity for plasma in a heliosheath transition layer. Nature 474, 359–361 (2011)ADSGoogle Scholar
  77. S. Kumar, A.L. Broadfoot, Evidence from Mariner 10 of solar wind flux depletion at high ecliptic latitudes. Astron. Astrophys. 69, L5–L8 (1978)ADSGoogle Scholar
  78. S. Kumar, A.L. Broadfoot, Signatures of solar wind latitudinal structure in interplanetary Lyman α emissions: Mariner 10 observations. Astrophys. J. 228, 302–311 (1979)ADSGoogle Scholar
  79. J.E. Kupperian, E.T. Byram, T.A. Chubb, H. Friedman, Far ultraviolet radiation in the night sky. Planet. Space Sci. 1, 3–6 (1959)ADSGoogle Scholar
  80. V.G. Kurt, Measurement of scattered Lyman α radiation in the vicinity of the Earth and in interplanetary space. In Space Research: Transactions of the All-union Conference on Space Physics, ed. by G.A. Skuridin et al. NASA Technical Translation: NASA TT F-389, Science Publishing House, Moscow, 10–16 June 1965, p. 769 (Translation published by NASA, Washington DC, USA, May 1966)Google Scholar
  81. V.G. Kurt, Kosmicheskie Issledovania (in russian) 5(6), 769–775 (1967)Google Scholar
  82. V.G. Kurt, T.A. Germogenova, Scattering of solar Lyman α radiation by galactic hydrogen. Sov. Astron. 11, 278–282 (1967)ADSGoogle Scholar
  83. V.G. Kurt, R.A. Syunyaev, Observations and interpretation of the ultraviolet radiation of the Galaxy. Sov. Astron. 11, 928–931 (1967)ADSGoogle Scholar
  84. E. Kyrölä, T. Summanen, P. Raback, Solar cycle and interplanetary hydrogen. Astron. Astrophys. 288, 299–314 (1994)ADSGoogle Scholar
  85. R. Lallement, The interaction of the heliosphere with interstellar medium. In The Century of Space Science, ed. by A.M. Bleeker, J. Geiss, M.C.E. Huber. (Kluwer, New York, 2001), pp. 1191–1216Google Scholar
  86. R. Lallement, J.-L. Bertaux, Deceleration of interstellar hydrogen at heliopause crossing suggested by Lyman-alpha spectral observations. Astron. Astrophys. 231, L3–L6 (1990)ADSGoogle Scholar
  87. R. Lallement, A.I.F.S. Stewart, Out-of-ecliptic Lyman α observations with Pioneer-Venus: solar wind anisotropy degree in 1986. Astron. Astrophys. 227, 600–608 (1990)ADSGoogle Scholar
  88. R. Lallement, J.-L. Bertaux, V.G. Kurt, E.N. Mironova, Observed perturbations of the velocity distribution of interstellar H atoms in the solar system with Prognoz Lyman α measurements. Astron. Astrophys. 140, 243–250 (1984)ADSGoogle Scholar
  89. R. Lallement, J.-L. Bertaux, F. Dalaudier, Interplanetary Lyman α spectral profiles and intensities for both repulsive and attractive solar force fields predicted absorption pattern by a hydrogen cell. Astron. Astrophys. 150, 21–32 (1985a)ADSGoogle Scholar
  90. R. Lallement, J.-L. Bertaux, V.G. Kurt, Solar wind decrease at high heliographic latitudes detected from Prognoz interplanetary Lyman α mapping. J. Geophys. Res. 90, 1413–1423 (1985b)ADSGoogle Scholar
  91. R. Lallement, E. Quémerais, J.-L. Bertaux, S. Ferron, D. Koutroumpa, R. Pellinen, Deflection of the interstellar neutral hydrogen flow across the heliospheric interface. Science 307, 1447–1449 (2005)ADSGoogle Scholar
  92. R. Lallement, E. Queḿerais, D. Koutroumpa, J.-L. Bertaux, S. Ferron, W. Schmidt, P. Lamy, The interstellar H flow: updated analysis of SOHO/SWAN Data. AIP Conf. Proc. 1216, 555–558 (2010)Google Scholar
  93. M. Lee, H. Kucharek, E. Möbius et al., An analytical model of interstellar gas in the heliosphere tailored to interstellar boundary explorer observations. Astrophys. J.Suppl. 198, article id 10 (2012)Google Scholar
  94. P. Lemaire, C. Emerich, W. Curdt et al., Solar H I Lyman alpha full disk profile obtained with the SUMER/SOHO spectrometer. Astron. Astrophys. 334, 1095–1098 (1998)ADSGoogle Scholar
  95. B.G. Lindsay, R.F. Stebbings, Charge transfer cross sections for energetic neutral atom data analysis. J. Geophys. Res. 110, A12213 (2005)ADSGoogle Scholar
  96. J. Linsky, B. Wood, The alpha Centauri line of sight: D/H ratio, physical properties of local insterstellar gas, and measurement of heated hydrogen (the “hydrogen wall”) near the heliopause. Astrophys. J. 463, 254 (1996)ADSGoogle Scholar
  97. L.J. Maher, B.A. Tinsley, Atomic hydrogen escape rate due to charge exchange with hot plasmaspheric ions. J. Geophys. Res. 82, 689–695 (1977)ADSGoogle Scholar
  98. Y.G. Malama, Monte-Carlo simulation of neutral atoms trajectories in the solar system. Astrophys. Space Sci. 176, 21–46 (1991)ADSGoogle Scholar
  99. Y.G. Malama, V.V. Izmodenov, S.V. Chalov, Modeling of the heliospheric interface: multi-component nature of the heliospheric plasma. Astron. Astrophys. 445, 693–701 (2006)ADSGoogle Scholar
  100. D.J. McComas, R.W. Ebert, H.A. Elliott et al., Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, L18103 (2008)ADSGoogle Scholar
  101. D.J. McComas, F. Allegrini, P. Bochsler et al., Global observations of the interstellar interaction from the interstellar boundary explorer (IBEX). Science v326, 959 (2009)Google Scholar
  102. R.R. Meier, Some optical and kinetic properties of the nearby interstellar gas. Astron. Astrophys. 55, 211–219 (1977)ADSGoogle Scholar
  103. D.C. Morton, J.D. Purcell, Observations of the extreme ultraviolet radiation in the night sky using an atomic hydrogen filter. Planet. Space Sci. 9, 455–458 (1962)ADSGoogle Scholar
  104. H.-R. Mueller, V. Florinski, J. Heerikhuisen, V.V. Izmodenov, K. Scherer, D. Alexashov, H.-J. Fahr, Comparing various multi-component global heliospheric models. Astron. Astrophys. 491, 43–51 (2008)ADSGoogle Scholar
  105. M. Neugebauer, C.W. Snyder, Solar plasma experiment. Science 138, 1095 (1962)ADSGoogle Scholar
  106. M. Opher, F.A. Bibi, G. Toth, J.D. Richardson, V.V. Izmodenov, T.I. Gombosi, A strong, highly-tilted interstellar magnetic field near the Solar System. Nature 462, 1036–1038 (2009)ADSGoogle Scholar
  107. E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J.Lett. 128, 664 (1958)ADSGoogle Scholar
  108. E.N. Parker, The stellar-wind regions. Astrophys. J.Lett. 134, 20–27 (1961)ADSGoogle Scholar
  109. T.N.L. Patterson, F.S. Johnson, W.B. Hanson, The distribution of interplanetary hydrogen. Planet. Space Sci. 11, 767–778 (1963)ADSGoogle Scholar
  110. W.R. Pryor, J.M. Ajello, C.A. Barth et al., The Galileo and Pioneer Venus ultraviolet spectrometer experiments: solar Lyman-alpha latitude variation at solar maximum from interplanetary Lyman-alpha observations. Astrophys. J. 394, 363–377 (1992)ADSGoogle Scholar
  111. W.R. Pryor, J.L. Scott, I.F. Stewart et al., Interplanetary Lyman α observations from Pioneer Venus over a solar cycle from 1978 to 1992. J. Geophys. Res. 103, 26833–26849 (1998)ADSGoogle Scholar
  112. W.R. Pryor, J.M. Ajello, D.J. McComas, M. Witte, W.K. Tobiska, Hydrogen atom lifetimes in the three-dimensional heliosphere over the solar cycle. J. Geophys. Res. 108, 8034 (2003). doi:10.1029/2003JA009878Google Scholar
  113. E. Quémerais, Angle dependent partial frequency redistribution in the interplanetary medium at Lyman α. Astron. Astrophys. 358, 353–367 (2000)ADSGoogle Scholar
  114. E. Quémerais, V.V. Izmodenov, Effects of the heliospheric interface on the interplanetary Lyman α glow seen at 1 AU from the Sun. Astron. Astrophys. 396, 269–281 (2002)ADSGoogle Scholar
  115. E. Quémerais, R. Lallement, J.-L. Bertaux et al., Interplanetary Lyman α line profiles: variations with solar activity cycle. Astron. Astrophys. 445, 1135–1142 (2006)ADSGoogle Scholar
  116. E. Quémerais, V.V. Izmodenov, D. Koutroumpa, Y.G. Malama, Time dependent model of the interplanetary Lyman α glow: applications to the SWAN data. Astron. Astrophys. 448, 351–359 (2008)ADSGoogle Scholar
  117. D. Ruciński, M. Bzowski, Modulation of interplanetary hydrogen density distribution during the solar cycle. Astron. Astrophys. 296, 248–263 (1995)ADSGoogle Scholar
  118. N.A. Schwadron, M. Bzowski, G.B. Crew et al., Comparison of interstellar boundary explorer observations with 3D global heliospheric models. Science 326, 966 (2009)ADSGoogle Scholar
  119. H. Sherer, M. Bzowski, H.-J. Fahr, D. Ruciński, Improved analysis of interplanetary HST Ly-a spectra using time-dependent modelings. Astron. Astrophys. 342, 601 (1999)ADSGoogle Scholar
  120. I.S. Shklovsky, On hydrogen emission in the night glow. Planet. Space Sci. 1, 63–65 (1959)ADSGoogle Scholar
  121. E.C. Stone, A.C. Cummings, F.B. McDonald et al., Science 309, 2017–2020 (2005)ADSGoogle Scholar
  122. B. Strömgren, The physical state of interstellar hydrogen. Astrophys. J. 89, 526–547 (1939)ADSzbMATHGoogle Scholar
  123. T. Summanen, R. Lallement, J.-L. Bertaux, E. Kyrölä, Latitudinal distribution of solar wind as deduced from Lyman α measurements: an improved method. J. Geophys. Res. 98, 13215–13224 (1993)ADSGoogle Scholar
  124. T. Summanen, The effect of the time and latitude-dependent solar ionisation rate on the measured Lyman α-intensity. Astron. Astrophys. 314, 663–671 (1996)ADSGoogle Scholar
  125. T. Terasawa, Energy spectrum and pitch angle distribution of particles reflected by MHD shock waves fast mode. Planet. Space Sci. 27, 193–201 (1979)ADSGoogle Scholar
  126. G.E. Thomas, Properties of nearby interstellar hydrogen deduced from Lyman α sky background measurements. In C.P. Sonett, P.J. Coleman, J.M. Wilcox (eds.), Solar Wind, Scientific and Technical Information Office, National Aeronautics and Space Administration., Washington, p. 661 (1972)Google Scholar
  127. G.E. Thomas, R.F. Krassa, OGO-5 measurements of the Lyman α sky background. Astron. Astrophys. 11, 218 (1971)ADSGoogle Scholar
  128. M.K. Wallis, Local interstellar medium. Nature 254, 202–203 (1975)ADSGoogle Scholar
  129. B.Y. Welsh, Warm and hot gas in the local ISM. Space Sci. Rev. 143, 241–252 (2009)ADSGoogle Scholar
  130. L. Williams, D.T. Hall, H.L. Pauls, G.P. Zank, The heliospheric hydrogen distribution: a multifluid model. Astrophys. J. 476, 366–384 (1997)ADSGoogle Scholar
  131. N. Witt, P.W. Blum, J.M. Ajello, Solar wind latitudinal variations deduced from Mariner 10 interplanetary H 1216 A observations. Astron. Astrophys. 73, 272–281 (1979)ADSGoogle Scholar
  132. N. Witt, P.W. Blum, J.M. Ajello, Polar solar wind and interstellar wind properties from interplanetary Lyman-alpha radiation measurements. Astron. Astrophys. 95, 80–85 (1981)ADSGoogle Scholar
  133. F.M. Wu, D.L. Judge, Temperature and flow velocity of the interplanetary gases along solar radii. Astrophys. J. 231, 594–605 (1979)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Vladislav V. Izmodenov
    • 1
    • 2
  • Olga A. Katushkina
    • 3
    • 4
  • Eric Quémerais
    • 5
  • Maciej Bzowski
    • 6
  1. 1.Lomonosov Moscow State University, School of Mechanics and Mathematics, Institute for Problems in Mechanics, Russian Academy of SciencesMoscowRussia
  2. 2.Space Research Institute, Russian Academy of SciencesMoscowRussia
  3. 3.Space Research Institute (IKI) Russian Academy of SciencesMoscowRussia
  4. 4.Lomonosov Moscow State University, School of Mechanics and MathematicsMoscowRussia
  5. 5.LATMOS-IPSLUniversité Versailles-Saint QuentinGuyancourtFrance
  6. 6.Space Research CenterPolish Academy of ScienceWarsawPoland

Personalised recommendations