Advertisement

Differentiation and Activation of γδ T Lymphocytes: Focus on CD27 and CD28 Costimulatory Receptors

  • Julie C. Ribot
  • Bruno Silva-Santos
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 785)

Abstract

γδ T lymphocytes are major providers of the pro-inflammatory cytokines interferon-γ (IFN-γ) and interleukin-17 (IL-17) at early stages of (auto)immune responses. We and others have recently described the phenotype and differentiation requirements of two distinct murine γδ T cell subsets producing either IFN-γ or IL-17. Here we summarize our current understanding of the molecular mechanisms that control γδ T cell differentiation, which is programmed in the thymus, and peripheral activation upon infection. We focus on the costimulatory receptors CD27 and CD28, which play independent and non-redundant roles in the physiology of γδ T cells in mice and in humans.

Keywords

γδ T cells T cell activation Costimulation CD27 CD28 

Notes

Acknowledgments

We thank our colleagues and collaborators that have helped us to produce the data reviewed and to shape the ideas discussed here. Our research is funded by the European Research Council (StG_260352 to B.S.S.), European Molecular Biology Organization (Young Investigator Programme; B.S.S.), and Fundação para a Ciência e Tecnologia (post-doctoral fellowship to J.C.R.).

References

  1. 1.
    Hayday AC: [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000, 18:975–1026.Google Scholar
  2. 2.
    Hayday A, Tigelaar R: Immunoregulation in the ­tissues by gammadelta T cells. Nat Rev Immunol 2003, 3:233–242.PubMedCrossRefGoogle Scholar
  3. 3.
    Kabelitz D, Wesch D, He W: Perspectives of gammadelta T cells in tumor immunology. Cancer Res 2007, 67:5–8.PubMedCrossRefGoogle Scholar
  4. 4.
    O’Brien RL, Born WK: gammadelta T cell subsets: a link between TCR and function? Semin Immunol 2010, 22:193–198.PubMedCrossRefGoogle Scholar
  5. 5.
    Hayday AC: Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 2009, 31:184–196.PubMedCrossRefGoogle Scholar
  6. 6.
    Born WK, Reardon CL, O’Brien RL: The function of gammadelta T cells in innate immunity. Curr Opin Immunol 2006, 18:31–38.PubMedCrossRefGoogle Scholar
  7. 7.
    Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, Craft J, Yin Z: Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med 2003, 198:433–442.PubMedCrossRefGoogle Scholar
  8. 8.
    Gibbons DL, Haque SF, Silberzahn T, Hamilton K, Langford C, Ellis P, Carr R, Hayday AC: Neonates harbour highly active gammadelta T cells with selective impairments in preterm infants. Eur J Immunol 2009, 39:1794–1806.PubMedCrossRefGoogle Scholar
  9. 9.
    Lockhart E, Green AM, Flynn JL: IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 2006, 177:4662–4669.PubMedGoogle Scholar
  10. 10.
    Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y: Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol 2007, 178:4466–4472.PubMedGoogle Scholar
  11. 11.
    Hamada S, Umemura M, Shiono T, Tanaka K, Yahagi A, Begum MD, Oshiro K, Okamoto Y, Watanabe H, Kawakami K, et al.: IL-17A produced by gammadelta T cells plays a critical role in innate immunity against listeria monocytogenes infection in the liver. J Immunol 2008, 181:3456–3463.PubMedGoogle Scholar
  12. 12.
    Roark CL, French JD, Taylor MA, Bendele AM, Born WK, O’Brien RL: Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing gamma delta T cells. J Immunol 2007, 179:5576–5583.PubMedGoogle Scholar
  13. 13.
    Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH: Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 2009, 31:331–341.PubMedCrossRefGoogle Scholar
  14. 14.
    Petermann F, Rothhammer V, Claussen MC, Haas JD, Blanco LR, Heink S, Prinz I, Hemmer B, Kuchroo VK, Oukka M, et al.: gammadelta T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 2010, 33:351–363.Google Scholar
  15. 15.
    Ribot JC, Chaves-Ferreira M, d’Orey F, Wencker M, Goncalves-Sousa N, Decalf J, Simas JP, Hayday AC, Silva-Santos B: Cutting Edge: Adaptive Versus Innate Receptor Signals Selectively Control the Pool Sizes of Murine IFN-{gamma}- or IL-17-Producing {gamma}{delta} T Cells upon Infection. J Immunol 2010, 185:6421–6425.PubMedCrossRefGoogle Scholar
  16. 16.
    Barcy S, De Rosa SC, Vieira J, Diem K, Ikoma M, Casper C, Corey L: Gamma delta+ T cells involvement in viral immune control of chronic human herpesvirus 8 infection. J Immunol 2008, 180:3417–3425.PubMedGoogle Scholar
  17. 17.
    Sciammas R, Kodukula P, Tang Q, Hendricks RL, Bluestone JA: T cell receptor-gamma/delta cells protect mice from herpes simplex virus type 1-induced lethal encephalitis. J Exp Med 1997, 185:1969–1975.PubMedCrossRefGoogle Scholar
  18. 18.
    Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakura Y, et al.: IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J Immunol 2007, 178:3786–3796.PubMedGoogle Scholar
  19. 19.
    Dejima T, Shibata K, Yamada H, Hara H, Iwakura Y, Naito S, Yoshikai Y: Protective role of naturally occurring interleukin-17A-producing gammadelta T cells in the lung at the early stage of systemic candidiasis in mice. Infect Immun 2011, 79:4503–4510.PubMedCrossRefGoogle Scholar
  20. 20.
    Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, Girardi M, Borst J, Hayday AC, Pennington DJ, et al.: CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol 2009, 10:427–436.PubMedCrossRefGoogle Scholar
  21. 21.
    Goncalves-Sousa N, Ribot JC, deBarros A, Correia DV, Caramalho I, Silva-Santos B: Inhibition of murine gammadelta lymphocyte expansion and effector function by regulatory alphabeta T cells is cell-contact-dependent and sensitive to GITR modulation. Eur J Immunol 2010, 40:61–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Ribot JC, deBarros A, Mancio-Silva L, Pamplona A, Silva-Santos B: B7-CD28 costimulatory signals control the survival and proliferation of murine and human gd T cells via interleukin-2 production. J Immunol 2012, 189(3):1202–1208.Google Scholar
  23. 23.
    Ho M, Webster HK, Tongtawe P, Pattanapanyasat K, Weidanz WP: Increased gamma delta T cells in acute Plasmodium falciparum malaria. Immunol Lett 1990, 25:139–141.PubMedCrossRefGoogle Scholar
  24. 24.
    Roussilhon C, Agrapart M, Ballet JJ, Bensussan A: Tlymphocytes bearing the gamma delta T cell receptor in patients with acute Plasmodium falciparum malaria. J Infect Dis 1990, 162:283–285.PubMedCrossRefGoogle Scholar
  25. 25.
    Andrew EM, Carding SR: Murine gammadelta T cells in infections: beneficial or deleterious? Microbes Infect 2005, 7:529–536.PubMedCrossRefGoogle Scholar
  26. 26.
    Fu YX, Roark CE, Kelly K, Drevets D, Campbell P, O’Brien R, Born W: Immune protection and control of inflammatory tissue necrosis by gamma delta T cells. J Immunol 1994, 153:3101–3115.PubMedGoogle Scholar
  27. 27.
    Egan CE, Dalton JE, Andrew EM, Smith JE, Gubbels MJ, Striepen B, Carding SR: A requirement for the Vgamma1+ subset of peripheral gammadelta T cells in the control of the systemic growth of Toxoplasma gondii and infection-induced pathology. J Immunol 2005, 175:8191–8199.PubMedGoogle Scholar
  28. 28.
    Girardi M, Lewis J, Glusac E, Filler RB, Geng L, Hayday AC, Tigelaar RE: Resident skin-specific gammadelta T cells provide local, nonredundant regulation of cutaneous inflammation. J Exp Med 2002, 195:855–867.PubMedCrossRefGoogle Scholar
  29. 29.
    Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E, Boismenu R, Havran WL: A role for skin gammadelta T cells in wound repair. Science 2002, 296:747–749.PubMedCrossRefGoogle Scholar
  30. 30.
    Toulon A, Breton L, Taylor KR, Tenenhaus M, Bhavsar D, Lanigan C, Rudolph R, Jameson J, Havran WL: A role for human skin-resident T cells in wound healing. J Exp Med 2009, 206:743–750.PubMedCrossRefGoogle Scholar
  31. 31.
    Havran WL, Jameson JM: Epidermal T cells and wound healing. J Immunol 2010, 184:5423–5428.PubMedCrossRefGoogle Scholar
  32. 32.
    Chen Y, Chou K, Fuchs E, Havran WL, Boismenu R: Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc Natl Acad Sci U S A 2002, 99:14338–14343.PubMedCrossRefGoogle Scholar
  33. 33.
    Tsuchiya T, Fukuda S, Hamada H, Nakamura A, Kohama Y, Ishikawa H, Tsujikawa K, Yamamoto H: Role of gamma delta T cells in the inflammatory response of experimental colitis mice. J Immunol 2003, 171:5507–5513.PubMedGoogle Scholar
  34. 34.
    Simpson SJ, Hollander GA, Mizoguchi E, Allen D, Bhan AK, Wang B, Terhorst C: Expression of pro-inflammatory cytokines by TCR alpha beta+ and TCR gamma delta+ T cells in an experimental model of colitis. Eur J Immunol 1997, 27:17–25.PubMedCrossRefGoogle Scholar
  35. 35.
    Do JS, Visperas A, Dong C, Baldwin WM, 3rd, Min B: Cutting edge: Generation of colitogenic Th17 CD4 T cells is enhanced by IL-17+ gammadelta T cells. J Immunol 2011, 186:4546–4550.PubMedCrossRefGoogle Scholar
  36. 36.
    Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, et al.: Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 2009, 15:946–950.PubMedCrossRefGoogle Scholar
  37. 37.
    Rajan AJ, Gao YL, Raine CS, Brosnan CF: A pathogenic role for gamma delta T cells in relapsing-remitting experimental allergic encephalomyelitis in the SJL mouse. J Immunol 1996, 157:941–949.PubMedGoogle Scholar
  38. 38.
    Odyniec A, Szczepanik M, Mycko MP, Stasiolek M, Raine CS, Selmaj KW: Gammadelta T cells enhance the expression of experimental autoimmune encephalomyelitis by promoting antigen presentation and IL-12 production. J Immunol 2004, 173:682–694.PubMedGoogle Scholar
  39. 39.
    Ito Y, Usui T, Kobayashi S, Iguchi-Hashimoto M, Ito H, Yoshitomi H, Nakamura T, Shimizu M, Kawabata D, Yukawa N, et al.: Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis. Arthritis Rheum 2009, 60:2294–2303.PubMedCrossRefGoogle Scholar
  40. 40.
    Wohler JE, Smith SS, Zinn KR, Bullard DC, Barnum SR: Gammadelta T cells in EAE: early trafficking events and cytokine requirements. Eur J Immunol 2009, 39:1516–1526.PubMedCrossRefGoogle Scholar
  41. 41.
    Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, Becher B: Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J Clin Invest 2012.Google Scholar
  42. 42.
    Cai Y, Shen X, Ding C, Qi C, Li K, Li X, Jala VR, Zhang HG, Wang T, Zheng J, et al.: Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 2011, 35:596–610.PubMedCrossRefGoogle Scholar
  43. 43.
    Laggner U, Di Meglio P, Perera GK, Hundhausen C, Lacy KE, Ali N, Smith CH, Hayday AC, Nickoloff BJ, Nestle FO: Identification of a novel proinflammatory human skin-homing Vgamma9Vdelta2 T cell subset with a potential role in psoriasis. J Immunol 2011, 187:2783–2793.PubMedCrossRefGoogle Scholar
  44. 44.
    Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hayday AC: Regulation of cutaneous malignancy by gammadelta T cells. Science 2001, 294:605–609.PubMedCrossRefGoogle Scholar
  45. 45.
    Bonneville M, O’Brien RL, Born WK: Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010, 10:467–478.PubMedCrossRefGoogle Scholar
  46. 46.
    Gomes AQ, Martins DS, Silva-Santos B: Targeting gammadelta T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res 2010, 70:10024–10027.PubMedCrossRefGoogle Scholar
  47. 47.
    Todaro M, D’Asaro M, Caccamo N, Iovino F, Francipane MG, Meraviglia S, Orlando V, La Mendola C, Gulotta G, Salerno A, et al.: Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes. J Immunol 2009, 182:7287–7296.PubMedCrossRefGoogle Scholar
  48. 48.
    D’Asaro M, La Mendola C, Di Liberto D, Orlando V, Todaro M, Spina M, Guggino G, Meraviglia S, Caccamo N, Messina A, et al.: V gamma 9V delta 2 T lymphocytes efficiently recognize and kill zoledronate-sensitized, imatinib-sensitive, and imatinib-resistant chronic myelogenous leukemia cells. J Immunol 2010, 184:3260–3268.PubMedCrossRefGoogle Scholar
  49. 49.
    Wakita D, Sumida K, Iwakura Y, Nishikawa H, Ohkuri T, Chamoto K, Kitamura H, Nishimura T: Tumor-infiltrating IL-17-producing gammadelta T cells support the progression of tumor by promoting angiogenesis. Eur J Immunol 2010, 40:1927–1937.PubMedCrossRefGoogle Scholar
  50. 50.
    Ma Y, Aymeric L, Locher C, Mattarollo SR, Delahaye NF, Pereira P, Boucontet L, Apetoh L, Ghiringhelli F, Casares N, et al.: Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy. J Exp Med 2011, 208:491–503.PubMedCrossRefGoogle Scholar
  51. 51.
    Silva-Santos B: Promoting angiogenesis within the tumor microenvironment: the secret life of murine lymphoid IL-17-producing gammadelta T cells. Eur J Immunol 2010, 40:1873–1876.PubMedCrossRefGoogle Scholar
  52. 52.
    Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM: Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006, 24:677–688.PubMedCrossRefGoogle Scholar
  53. 53.
    Jensen KD, Su X, Shin S, Li L, Youssef S, Yamasaki S, Steinman L, Saito T, Locksley RM, Davis MM, et al.: Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 2008, 29:90–100.PubMedCrossRefGoogle Scholar
  54. 54.
    Lochner M, Peduto L, Cherrier M, Sawa S, Langa F, Varona R, Riethmacher D, Si-Tahar M, Di Santo JP, Eberl G: In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells. J Exp Med 2008, 205:1381–1393.PubMedCrossRefGoogle Scholar
  55. 55.
    Shibata K, Yamada H, Nakamura R, Sun X, Itsumi M, Yoshikai Y: Identification of CD25+ gamma delta T cells as fetal thymus-derived naturally occurring IL-17 producers. J Immunol 2008, 181:5940–5947.PubMedGoogle Scholar
  56. 56.
    Kisielow J, Kopf M, Karjalainen K: SCART scavenger receptors identify a novel subset of adult gammadelta T cells. J Immunol 2008, 181:1710–1716.PubMedGoogle Scholar
  57. 57.
    Haas JD, Gonzalez FH, Schmitz S, Chennupati V, Fohse L, Kremmer E, Forster R, Prinz I: CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells. Eur J Immunol 2009, 39:3488–3497.PubMedCrossRefGoogle Scholar
  58. 58.
    Awasthi A, Riol-Blanco L, Jager A, Korn T, Pot C, Galileos G, Bettelli E, Kuchroo VK, Oukka M: Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol 2009, 182:5904–5908.PubMedCrossRefGoogle Scholar
  59. 59.
    Ciofani M, Zuniga-Pflucker JC: Determining gammadelta versus alphass T cell development. Nat Rev Immunol 2010, 10:657–663.PubMedGoogle Scholar
  60. 60.
    Shin S, El-Diwany R, Schaffert S, Adams EJ, Garcia KC, Pereira P, Chien YH: Antigen recognition determinants of gammadelta T cell receptors. Science 2005, 308:252–255.PubMedCrossRefGoogle Scholar
  61. 61.
    Turchinovich G, Hayday AC: Skint-1 identifies a common molecular mechanism for the development of interferon-gamma-secreting versus interleukin-17-secreting gammadelta T cells. Immunity 2011, 35:59–68.PubMedCrossRefGoogle Scholar
  62. 62.
    Lewis JM, Girardi M, Roberts SJ, Barbee SD, Hayday AC, Tigelaar RE: Selection of the cutaneous intraepithelial gammadelta+ T cell repertoire by a thymic stromal determinant. Nat Immunol 2006, 7:843–850.PubMedCrossRefGoogle Scholar
  63. 63.
    Boyden LM, Lewis JM, Barbee SD, Bas A, Girardi M, Hayday AC, Tigelaar RE, Lifton RP: Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet 2008, 40:656–662.PubMedCrossRefGoogle Scholar
  64. 64.
    Do JS, Fink PJ, Li L, Spolski R, Robinson J, Leonard WJ, Letterio JJ, Min B: Cutting edge: spontaneous development of IL-17-producing gamma delta T cells in the thymus occurs via a TGF-beta 1-dependent mechanism. J Immunol 2010, 184:1675–1679.PubMedCrossRefGoogle Scholar
  65. 65.
    Shibata K, Yamada H, Sato T, Dejima T, Nakamura M, Ikawa T, Hara H, Yamasaki S, Kageyama R, Iwakura Y, et al.: Notch-Hes1 pathway is required for the development of IL-17-producing gammadelta T cells. Blood 2011, 118:586–593.PubMedCrossRefGoogle Scholar
  66. 66.
    Powolny-Budnicka I, Riemann M, Tanzer S, Schmid RM, Hehlgans T, Weih F: RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin-dependent interleukin-17 production in gammadelta T cells. Immunity 2011, 34:364–374.PubMedCrossRefGoogle Scholar
  67. 67.
    Narayan K, Sylvia KE, Malhotra N, Yin CC, Martens G, Vallerskog T, Kornfeld H, Xiong N, Cohen NR, Brenner MB, et al.: Intrathymic programming of effector fates in three molecularly distinct gammadelta T cell subtypes. Nat Immunol 2012, 13:511–518.PubMedCrossRefGoogle Scholar
  68. 68.
    Hayes SM, Laird RM: Genetic requirements for the development and differentiation of interleukin-17-producing gammadelta T cells. Crit Rev Immunol 2012, 32:81–95.PubMedCrossRefGoogle Scholar
  69. 69.
    Kapsenberg ML: Gammadelta T cell receptors without a job. Immunity 2009, 31:181–183.PubMedCrossRefGoogle Scholar
  70. 70.
    O’Brien R, Jin N, Huang Y, Aydintug MK, Roark C, Born W: Characteristics of IL-17-producing gammadelta T cells. Immunity 2010, 32:1; author reply 2–4.Google Scholar
  71. 71.
    Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M: Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 2009, 31:321–330.PubMedCrossRefGoogle Scholar
  72. 72.
    Smith-Garvin JE, Koretzky GA, Jordan MS: T cell activation. Annu Rev Immunol 2009, 27:591–619.PubMedCrossRefGoogle Scholar
  73. 73.
    Ribot JC, debarros A, Silva-Santos B: Searching for “signal 2”: costimulation requirements of gammadelta T cells. Cell Mol Life Sci 2011, 68:2345–2355.Google Scholar
  74. 74.
    Morita CT, Jin C, Sarikonda G, Wang H: Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev 2007, 215:59–76.PubMedCrossRefGoogle Scholar
  75. 75.
    deBarros A, Chaves-Ferreira M, d’Orey F, Ribot JC, Silva-Santos B: CD70-CD27 interactions provide survival and proliferative signals that regulate T-cell receptor-driven activation of human γδ peripheral blood lymphocytes. Eur J Immunol 2011, 41(1):195–201.Google Scholar
  76. 76.
    French RR, Taraban VY, Crowther GR, Rowley TF, Gray JC, Johnson PW, Tutt AL, Al-Shamkhani A, Glennie MJ: Eradication of lymphoma by CD8 T cells following anti-CD40 monoclonal antibody therapy is critically dependent on CD27 costimulation. Blood 2007, 109:4810–4815.PubMedCrossRefGoogle Scholar
  77. 77.
    Glouchkova L, Ackermann B, Zibert A, Meisel R, Siepermann M, Janka-Schaub GE, Goebel U, Troeger A, Dilloo D: The CD70/CD27 pathway is critical for stimulation of an effective cytotoxic T cell response against B cell precursor acute lymphoblastic leukemia. J Immunol 2009, 182:718–725.PubMedGoogle Scholar
  78. 78.
    Casetti R, Perretta G, Taglioni A, Mattei M, Colizzi V, Dieli F, D’Offizi G, Malkovsky M, Poccia F: Drug-induced expansion and differentiation of V gamma 9V delta 2 T cells invivo: the role of exogenous IL-2. J Immunol 2005, 175:1593–1598.PubMedGoogle Scholar
  79. 79.
    Correia DV, d’Orey F, Cardoso BA, Lanca T, Grosso AR, deBarros A, Martins LR, Barata JT, Silva-Santos B: Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk- and PI-3K/Akt-mediated signal transduction in anti-tumor human gammadelta T-cells. PLoS One 2009, 4:e5657.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Molecular Immunology Unit, Faculdade de Medicinal, Institutor de Medicinal MolecularUniversidade de LisboaLisbonPortugal

Personalised recommendations