Kisspeptin Excitation of GnRH Neurons

  • Oline K. Rønnekleiv
  • Martin J. Kelly
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 784)


Kisspeptin binding to its cognate G protein-coupled receptor (GPR54, aka Kiss1R) in gonadotropin-releasing hormone (GnRH) neurons stimulates peptide release and activation of the reproductive axis in mammals. Kisspeptin has pronounced pre- and postsynaptic effects, with the latter dominating the excitability of GnRH neurons. Presynaptically, kisspeptin increases the excitatory drive (both GABA-A and glutamate) to GnRH neurons and postsynaptically, kisspeptin inhibits an A-type and inwardly rectifying K+ (Kir 6.2 and GIRK) currents and activates nonselective cation (TRPC) currents to cause long-lasting depolarization and increased action potential firing. The signaling cascades and the multiple intracellular targets of kisspeptin actions in native GnRH neurons are continuing to be elucidated. This review summarizes our current state of knowledge about kisspeptin signaling in GnRH neurons.


Arcuate Nucleus GnRH Neuron Canonical Transient Receptor Potential TRPC Channel Burst Firing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank current and past members of their laboratories who ­contributed to the work described herein, especially Drs. Chunguang Zhang, Jian Qiu, Yuan Fang, Troy Roepke, and Ms. Martha A. Bosch; also, special thanks to Ms. Martha A. Bosch for her skilled assistance with the illustrations and manuscript preparations. The work from the authors’ laboratories was supported by NIH grants NS43330, NS38809, DK68098.


  1. 1.
    Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA (2004) A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145:4073–4077PubMedCrossRefGoogle Scholar
  2. 2.
    Navarro VM, Castellano JM, Fernández-Fernández R, Barreiro ML, Roa J, Sanchez-Criado JE, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2004) Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 145:4565–4574PubMedCrossRefGoogle Scholar
  3. 3.
    Plant TM, Ramaswamy S, DiPietro MJ (2006) Repetitive activation of hypothalamic G protein-­coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin-releasing hormone discharges. Endocrinology 147:1007–1013PubMedCrossRefGoogle Scholar
  4. 4.
    Kuohung W, Kaiser UB (2006) GPR54 and KiSS-1: role in the regulation of puberty and reproduction. Rev Endocr Metab Disord 7:257–263PubMedCrossRefGoogle Scholar
  5. 5.
    Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K, Sugiura H, Ohtaki T, Matsumoto H, Uenoyama Y, Tsukamura H, Inoue K, Maeda K-I (2007) Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev 53:367–378PubMedCrossRefGoogle Scholar
  6. 6.
    Kauffman AS, Park JH, McPhie-Lalmansingh AA, Gottsch ML, Bodo C, Hohmann JG, Pavlova MN, Rohde AD, Clifton DK, Steiner RA, Rissman EF (2007) The kisspeptin receptor GPR54 is required for sexual differentiation of the brain and behavior. J Neurosci 27:8826–8835PubMedCrossRefGoogle Scholar
  7. 7.
    Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden J-M, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636PubMedCrossRefGoogle Scholar
  8. 8.
    Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA (2004) Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuronendocrinology 80:264–272CrossRefGoogle Scholar
  9. 9.
    Thompson EL, Patterson M, Murphy KG, Smith KL, Dhillo WS, Todd JF, Ghatei MA, Bloom SR (2004) Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-­pituitary-gonadal axis. J Neuroendocrinol 16:850–858PubMedCrossRefGoogle Scholar
  10. 10.
    Kinoshita M, Tsukamura H, Adachi S, Matsui H, Uenoyama Y, Iwata K, Yamada S, Inoue K, Ohtaki T, Matsumoto H, Maeda K-I (2005) Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology 146:4431–4436PubMedCrossRefGoogle Scholar
  11. 11.
    Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MBL, Colledge WH, Caraty A, Aparicio SAJR (2005) Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci 102:1761–1766PubMedCrossRefGoogle Scholar
  12. 12.
    Han S-K, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE (2005) Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 25:11349–11356PubMedCrossRefGoogle Scholar
  13. 13.
    Pielecka-Fortuna J, Chu Z, Moenter SM (2008) Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology 149:1979–1986PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang C, Roepke TA, Kelly MJ, Rønnekleiv OK (2008) Kisspeptin depolarizes gonadotropin-­releasing hormone neurons through activation of TRPC-like cationic channels. J Neurosci 28:4423–4434PubMedCrossRefGoogle Scholar
  15. 15.
    Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA (2005) Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146:3686–3692PubMedCrossRefGoogle Scholar
  16. 16.
    Roa J, Vigo E, Castellano JM, Navarro VM, Fernández-Fernández R, Casanueva FF, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M (2006) Hypothalamic expression of Kiss-1 system and gonadotropin-releasing effects of kisspeptin in different reproductive states of the female rat. Endocrinology 147:2864–2878PubMedCrossRefGoogle Scholar
  17. 17.
    Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA (2006) Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 26:6687–6694PubMedCrossRefGoogle Scholar
  18. 18.
    Oakley AE, Clifton DK, Steiner RA (2009) Kisspeptin signaling in the brain. Endocr Rev 30:713–743PubMedCrossRefGoogle Scholar
  19. 19.
    Smith JT (2008) Kisspeptin signalling in the brain: steroid regulation in the rodent and ewe. Brain Res Rev 57:288–298PubMedCrossRefGoogle Scholar
  20. 20.
    Clarkson J, d’Anglemont de Tassigny X, Colledge WH, Caraty A, Herbison AE (2009) Distribution of kisspeptin neurones in the adult female mouse brain. J Endocrinol 21:673–682Google Scholar
  21. 21.
    Wiegand SJ, Terasawa E, Bridson WE, Goy RW (1980) Effects of discrete lesions of preoptic and suprachiasmatic structures in the female rat: alterations in the feedback regulation of gonadotropin secretion. Neuroendocrinology 31:147–157PubMedCrossRefGoogle Scholar
  22. 22.
    Petersen SL, Barraclough CA (1989) Suppression of spontaneous LH surges in estrogen-­treated ovariectomized rats by microimplants of antiestrogens into the preoptic brain. Brain Res 484:279–289PubMedCrossRefGoogle Scholar
  23. 23.
    Ma YJ, Kelly MJ, Rønnekleiv OK (1990) Pro-gonadotropin-releasing hormone (ProGnRH) and GnRH Content in the preoptic area and the basal hypothalamus of anterior medial ­preoptic nucleus/suprachiasmatic nucleus-lesioned persistent estrous rats. Endocrinology 127:2654–2664PubMedCrossRefGoogle Scholar
  24. 24.
    Kauffman AS, Gottsch ML, Roa J, Byquist AC, Crown A, Clifton DK, Hoffman GE, Steiner RA, Tena-Sempere M (2007) Sexual differentiation of kiss1 gene expression in the brain of the rat. Endocrinology 148:1774–1783PubMedCrossRefGoogle Scholar
  25. 25.
    Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM, Clifton DK, Steiner RA (2005) Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 146:2976–2984PubMedCrossRefGoogle Scholar
  26. 26.
    Terasawa E, Wiegand SJ (1978) Effects of hypothalamic deafferentation on ovulation and estrous cyclicity in the female guinea pig. Neuroendocrinology 26:229–248PubMedCrossRefGoogle Scholar
  27. 27.
    King JC, Ronsheim PM, Liu E, Powers L, Slonimski M, Rubin BS (1998) Fos expression in luteinizing hormone-releasing hormone neurons of guinea pigs, with knife cuts separating the preoptic area and the hypothalamus, demonstrating luteinizing hormone surges. Biol Reprod 58:323–329PubMedCrossRefGoogle Scholar
  28. 28.
    Caraty A, Fabre-Nys C, Delaleu B, Locatelli A, Bruneau G, Karsch FJ, Herbison A (1998) Evidence that the mediobasal hypothalamus is the primary site of action of estradiol in inducing the preovulatory gonadotropin releasing hormone surge in the ewe. Endocrinology 139:1752–1760PubMedCrossRefGoogle Scholar
  29. 29.
    Plant TM, Krey LC, Moosy J, McCormack JT, Hess DL, Knobil E (1978) The arcuate nucleus and the control of gonadotropin and prolactin secretion in the female Rhesus monkey (Macaca mulatta). Endocrinology 102:52–62PubMedCrossRefGoogle Scholar
  30. 30.
    Weick RF (1981) Induction of the luteinizing hormone surge by intrahypothalamic application of estrogen in the rhesus monkey. Biol Reprod 24:415–422PubMedCrossRefGoogle Scholar
  31. 31.
    Smith JT, Pereira LA, Clarke IJ (2009) Kisspeptin neurons in the ovine arcuate nucleus and preoptic area are involved in the preovulatory luteinizing hormone surge. Neuroendocrinology 150:5530–5538Google Scholar
  32. 32.
    Clarke IJ, Smith JT, Caraty A, Goodman RL, Lehman MN (2009) Kisspeptin and seasonality in sheep. Peptides 30:154–163PubMedCrossRefGoogle Scholar
  33. 33.
    Smith JT, Shahab M, Pereira A, Pau K-YF, Clarke IJ (2010) Hypothalamic expression of KISS1 and gonadotropin inhibitory hormone genes during the menstrual cycle of a non-­human primate. Biol Reprod 83:568–577PubMedCrossRefGoogle Scholar
  34. 34.
    Bosch MA, Xue C, Ronnekleiv OK (2012) Kisspeptin expression in guinea pig hypothalamus: effects of 17b-estradiol. J Comp Neurol 520:2143–2162PubMedCrossRefGoogle Scholar
  35. 35.
    Hoffman GE, Le WW, Franceschini I, Caraty A, Advis JP (2011) Expression of Fos and in Vivo median eminence release of LHRH identifies an active role for preoptic area kisspeptin neurons in synchronized surges of LH and LHRH in the ewe. Neuroendocrinology 152:214–222Google Scholar
  36. 36.
    Roseweir AK, Kauffman AS, Smith JT, Guerriero KA, Morgan K, Pielecka-Fortuna J, Pineda R, Gottsch ML, Tena-Sempere M, Moenter SM, Terasawa E, Clarke IJ, Steiner RA, Millar RP (2009) Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J Neurosci 29:3920–3929PubMedCrossRefGoogle Scholar
  37. 37.
    Li X-F, Kinsey-Jones JS, Cheng Y, Knox AMI, Lin Y, Petrou NA, Roseweir A, Lightman SL, Milligan SR, Limmar RP, O’Byrne KT (2009) Kisspeptin signalling in the hypothalamic arcuate nucleus regulates GnRH pulse generator frequency in the rat. PLoS One 4:1–9CrossRefGoogle Scholar
  38. 38.
    Goodman RL, Lehman MN, Smith JT, Coolen LM, de Oliveira CVR, Jafarzadehshirazi MR, Pereira A, Iqbal J, Caraty A, Ciofi P, Clarke IJ (2007) Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 148:5752–5760PubMedCrossRefGoogle Scholar
  39. 39.
    Lehman MN, Coolen LM, Goodman RL (2010) Kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 151:3479–3489PubMedCrossRefGoogle Scholar
  40. 40.
    Lagrange AH, Rønnekleiv OK, Kelly MJ (1995) Estradiol-17b and m-opioid peptides rapidly hyperpolarize GnRH neurons: a cellular mechanism of negative feedback? Endocrinology 136:2341–2344PubMedCrossRefGoogle Scholar
  41. 41.
    Stafford LJ, Xia C, Ma W, Cai Y, Liu M (2002) Identification and characterization of mouse metastasis-suppressor KiSS1 and its G-protein-couple receptor. Cancer Res 62:5399–5404PubMedGoogle Scholar
  42. 42.
    Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617PubMedCrossRefGoogle Scholar
  43. 43.
    Clarkson J, d’Anglemont de Tassigny X, Moreno AS, Colledge WH, Herbison AE (2008) Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J Neurosci 28:8691–8697PubMedCrossRefGoogle Scholar
  44. 44.
    Spergel DJ, Kruth U, Hanley DF, Sprengel R, Seeburg PH (1999) GABA-and glutamate activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. J Neurosci 19:2037–2050PubMedGoogle Scholar
  45. 45.
    Kuehl-Kovarik MC, Pouliot WA, Halterman GL, Handa RJ, Dudek FE, Partin KM (2002) Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. J Neurosci 22:2313–2322PubMedGoogle Scholar
  46. 46.
    DeFazio RA, Heger S, Ojeda SR, Moenter SM (2002) Activation of A-type gamma-­aminobutyric receptors excites gonadotropin-releasing hormone neurons. Mol Endocrinol 16:2872–2891PubMedCrossRefGoogle Scholar
  47. 47.
    Han SK, Abraham IM, Herbison AE (2002) Effect of GABA on GnRH neurons switches from depolarization to hyperpolarization at puberty in the female mouse. Endocrinology 143:1459–1466PubMedCrossRefGoogle Scholar
  48. 48.
    Suter KJ (2004) Control of firing by small (S)-a-amino-3-hydroxy-5methyl-isoxazolepropionic acid-like inputs in hypothalamic gonadotropin releasing-hormone (GnRH) neurons. Neuroscience 128:443–450PubMedCrossRefGoogle Scholar
  49. 49.
    Iremonger KJ, Constantin S, Liu X, Herbison AE (2010) Glutamate regulation of GnRH neuron excitability. Brain Res 1364:35–43PubMedCrossRefGoogle Scholar
  50. 50.
    Liu X, Lee K, Herbison AE (2008) Kisspeptin excites gonadotropin-releasing hormone (GnRH) neurons through a phosphilipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology 149:4605–4614PubMedCrossRefGoogle Scholar
  51. 51.
    Dumalska I, Wu M, Morozova E, Liu R, Van den Pol AN, Alreja M (2008) Excitatory effects of the puberty-initiating peptide kisspeptin and group I metabotropic glutamate receptor agonists differentiate two distinct subpopulations of gonadotropin-releasing hormone neurons. J Neurosci 28:8003–8013PubMedCrossRefGoogle Scholar
  52. 52.
    Pielecka-Fortuna J, DeFazio RA, Moenter SM (2011) Voltage-gated potassium currents are targets of diurnal changes in estradiol feedback regulation and kisspeptin action on gonadotropin-­releasing hormone neurons in mice. Biol Reprod 85:987–995PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang C, Bosch MA, Levine JE, Rønnekleiv OK, Kelly MJ (2007) Gonadotropin-releasing hormone neurons express KATP channels that are regulated by estrogen and responsive to glucose and metabolic inhibition. J Neurosci 27:10153–10164PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang C, Bosch MA, Rønnekleiv OK, Kelly MJ (2009) GABAB receptor mediated inhibition of GnRH neurons is suppressed by kisspeptin-GPR54 signaling. Endocrinology 150:2388–2394PubMedCrossRefGoogle Scholar
  55. 55.
    Wu M, Dumalska I, Morozova E, Van den Pol AN, Alreja M (2009) Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proc Natl Acad Sci U S A 106:17217–17222PubMedCrossRefGoogle Scholar
  56. 56.
    DeFazio RA, Moenter SM (2002) Estradiol feedback alters potassium currents and firing properties of gonadotropin-releasing hormone neurons. Mol Endocrinol 16:2255–2265PubMedCrossRefGoogle Scholar
  57. 57.
    Constantin S, Caligioni CS, Stojilkovic S, Wray S (2009) Kisspeptin-10 facilitates a plasma membrane-driven calcium oscillator in gonadotropin-releasing hormone-1 neurons. Endocrinology 150:1400–1412PubMedCrossRefGoogle Scholar
  58. 58.
    Kroll H, Bolsover S, Hsu J, Kim S-H, Bouloux P-M (2011) Kisspeptin-evoked calcium signals in isolated primary rat gonadotropin-releasing hormone neurones. Neuroendocrinology 93:114–120PubMedCrossRefGoogle Scholar
  59. 59.
    Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524PubMedCrossRefGoogle Scholar
  60. 60.
    Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417PubMedCrossRefGoogle Scholar
  61. 61.
    Clapham DE, Runnels LW, Strübing C (2001) The TRP ion channel family. Nat Rev Neurosci 2:387–396PubMedCrossRefGoogle Scholar
  62. 62.
    Clapham D, Julius D, Montell C, Schultz G (2005) International union of pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 57:427–450PubMedCrossRefGoogle Scholar
  63. 63.
    Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655PubMedCrossRefGoogle Scholar
  64. 64.
    Plant TD, Schaefer M (2003) TRPC4 and TRPC5: receptor-operated Ca2+-permeable nonselective cation channels. Cell Calcium 33:441–450PubMedCrossRefGoogle Scholar
  65. 65.
    Trebak M, Vazquez G, Bird GS, Putney JW Jr (2003) The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33:451–461PubMedCrossRefGoogle Scholar
  66. 66.
    Berg AP, Sen N, Bayliss DA (2007) TrpC3/C7 and Slo2.1 are molecular targets for metabotropic glutamate receptor signaling in rat striatal cholinergic interneurons. J Neurosci 27:8845–8856PubMedCrossRefGoogle Scholar
  67. 67.
    Faber ESL, Sedlak P, Vidovic M, Sah P (2006) Synaptic activation of transient receptor potential channels by metabotropic glutamate receptors in the lateral amygdala. Neuroscience 137:781–794PubMedCrossRefGoogle Scholar
  68. 68.
    Meis S, Munsch T, Sosulina L, Pape H-C (2007) Postsynaptic mechanisms underlying responsiveness of amygdloid neurons to cholecystrokinin are mediated by a transient receptor potential-like current. Mol Cell Neurosci 35:356–367PubMedCrossRefGoogle Scholar
  69. 69.
    Qiu J, Fang Y, Rønnekleiv OK, Kelly MJ (2010) Leptin excites proopiomelanocortin neurons via activation of TRPC channels. J Neurosci 30:1560–1565PubMedCrossRefGoogle Scholar
  70. 70.
    Qiu J, Fang Y, Bosch MA, Rønnekleiv OK, Kelly MJ (2011) Guinea pig kisspeptin neurons are depolarized by leptin via activation of TRPC channels. Endocrinology 152:1503–1514PubMedCrossRefGoogle Scholar
  71. 71.
    Birnbaumer L (2009) The TRPC class of ion channels: a critical review of their roles in slow, sustained increases in intracellular Ca2+ concentrations. Annu Rev Pharmacol Toxicol 49:395–426PubMedCrossRefGoogle Scholar
  72. 72.
    Castellano JM, Navarro VM, Fernández-Fernández R, Castaño JP, Malagón MM, Aguilar E, Dieguez C, Magni P, Pinilla L, Tena-Sempere M (2006) Ontogeny and mechanisms of action for the stimulatory effect of kisspeptin on gonadotropin-releasing hormone system of the rat. Mol Cell Endocrinol 257–258:75–83PubMedCrossRefGoogle Scholar
  73. 73.
    Ambudkar IS, Ong HL (2007) Organization and function of TRPC channelsomes. Pflügers Arch Eur J Physiol 455:187–200CrossRefGoogle Scholar
  74. 74.
    Blair NT, Kaczmarek JS, Clapham DE (2009) Intracellular calcium strongly potentiates agonist-­activated TRPC5 channels. J Gen Physiol 133:525–546PubMedCrossRefGoogle Scholar
  75. 75.
    Clapham DE (2007) Snapshot: mammalian TRP channels. Cell 129:220PubMedCrossRefGoogle Scholar
  76. 76.
    Sim JA, Skynner MJ, Pape JR, Herbison AE (2000) Late postnatal reorganization of GABAA receptor signalling in native GnRH neurons. Eur J Neurosci 12:3497–3504PubMedCrossRefGoogle Scholar
  77. 77.
    Han SK, Todman MG, Herbison AE (2004) Endogenous GABA release inhibits the firing of adult gonadotropin-releasing hormone neurons. Endocrinology 145:495–499PubMedCrossRefGoogle Scholar
  78. 78.
    Yin C, Ishii H, Tanaka N, Sakuma Y, Kato M (2008) Activation of A-type gamma-amino butyric acid receptors excites gonadotrophin-releasing hormone neurones isolated from adult rats. J Neuroendocrinol 20:566–575PubMedCrossRefGoogle Scholar
  79. 79.
    Watanabe M, Sakuma Y, Kato M (2009) GABA receptors mediate excitation in adult rat GnRH neurons. Biol Reprod 81:327–332PubMedCrossRefGoogle Scholar
  80. 80.
    Herbison AE, Moenter SM (2011) Depolarising and hyperpolarising actions of GABAA receptor activation on gonadotrophin-releasing hormone neurons: towards an emerging consensus. J Neuroendocrinol 23:557–569PubMedCrossRefGoogle Scholar
  81. 81.
    Pape JP, Skynner MJ, Sim JA, Herbison AE (2001) Profiling gamma-aminobutyric acid (GABAA) receptor subunit mRNA expression in postnatal gonadotropin-releasing hormone (GnRH) neurons of the male mouse with single cell RT-PCR. Neuroendocrinology 74:300–308PubMedCrossRefGoogle Scholar
  82. 82.
    Todman MG, Han S-K, Herbison AE (2005) Profiling neurotransmitter receptor expression in mouse gonadotropin-releasing hormone neurons using green fluorescent protein-promoter transgenics and microarrays. Neuroscience 132:703–712PubMedCrossRefGoogle Scholar
  83. 83.
    Sliwowska JH, Billings HJ, Goodman RL, Lehman MN (2006) Immunocytochemical ­colocalization of GABAB receptor subunits in gonadotropin-releasing hormone neurons of the sheep. Neuroscience 141:311–319PubMedCrossRefGoogle Scholar
  84. 84.
    Liu X, Herbison AE (2011) Estrous cycle- and sex-dependent changes in pre- and postsynaptic GABAB control of GnRH neuron excitability. Endocrinology 152:1–9CrossRefGoogle Scholar
  85. 85.
    Kelly MJ, Loose MD, Rønnekleiv OK (1992) Estrogen suppresses m-opioid and GABAB-­mediated hyperpolarization of hypothalamic arcuate neurons. J Neurosci 12:2745–2750PubMedGoogle Scholar
  86. 86.
    Lagrange AH, Wagner EJ, Rønnekleiv OK, Kelly MJ (1996) Estrogen rapidly attenuates a GABAB response in hypothalamic neurons. Neuroendocrinology 64:114–123PubMedCrossRefGoogle Scholar
  87. 87.
    Wagner EJ, Rønnekleiv OK, Bosch MA, Kelly MJ (2001) Estrogen biphasically modifies hypothalamic GABAergic function concomitantly with negative and positive control of luteinizing hormone release. J Neurosci 21:2085–2093PubMedGoogle Scholar
  88. 88.
    Stern JE, Li Y, Richards DS (2002) Postsynaptic GABA(B) receptors in supraoptic oxytocin and vasopressin neurons. Prog Brain Res 139:121–125PubMedCrossRefGoogle Scholar
  89. 89.
    Slugg RM, Zheng SX, Fang Y, Kelly MJ, Rønnekleiv OK (2003) Baclofen inhibits guinea pig magnocellular neurones via activation of an inwardly-rectifying K+ conductance. J Physiol (Lond) 551:295–308CrossRefGoogle Scholar
  90. 90.
    Qiu J, Bosch MA, Tobias SC, Grandy DK, Scanlan TS, Rønnekleiv OK, Kelly MJ (2003) Rapid signaling of estrogen in hypothalamic neurons involves a novel G protein-coupled estrogen receptor that activates protein kinase C. J Neurosci 23:9529–9540PubMedGoogle Scholar
  91. 91.
    Kelly MJ, Rønnekleiv OK (1994) Electrophysiological analysis of neuroendocrine neuronal activity in hypothalamic slices. In: Levine JE (ed) Methods in neurosciences: pulsatility in neuroendocrine systems. Academic, San Diego, pp 47–67Google Scholar
  92. 92.
    Lagrange AH, Rønnekleiv OK, Kelly MJ (1994) The potency of m-opioid hyperpolarization of hypothalamic arcuate neurons is rapidly attenuated by 17b-estradiol. J Neurosci 14:6196–6204PubMedGoogle Scholar
  93. 93.
    Herbison AE (1997) Estrogen regulation of GABA transmission in rat preoptic area. Brain Res Bull 44:321–326PubMedCrossRefGoogle Scholar
  94. 94.
    Jackson GL, Kuehl D (2002) Gamma-aminobutyric acid (GABA) regulation of GnRH secretion in sheep. Reproduction 59:15–24PubMedGoogle Scholar
  95. 95.
    Christian CA, Moenter SM (2007) Estradiol induces diurnal shifts in GABA transmission to gonadotropin-releasing hormone neurons to provide a neural signal for ovulation. J Neurosci 27:1913–1921PubMedCrossRefGoogle Scholar
  96. 96.
    Pielecka-Fortuna J, Moenter SM (2010) Kisspeptin increases g-aminobutyric acidergic and glutamatergic transmission directly to gonadotropin-releasing hormone neurons in an estradiol-­dependent manner. Neuroendocrinology 151:291–300Google Scholar
  97. 97.
    Logothetis DE, Zhang H (1999) Gating of G protein-sensitive inwardly rectifying K+ channels through phosphatidylinositol 4,5-bisphosphate. J Physiol 520:630PubMedCrossRefGoogle Scholar
  98. 98.
    Kobrinsky E, Mirshahi T, Zhang H, Jin T, Logothetis DE (2000) Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization. Nat Cell Biol 2:507–514PubMedCrossRefGoogle Scholar
  99. 99.
    Qiu J, Xue C, Bosch MA, Murphy JG, Fan W, Rønnekleiv OK, Kelly MJ (2007) Serotonin 5HT2c receptor signaling in hypothalamic POMC neurons: role in energy homeostasis in females. Mol Pharm 72:885–896CrossRefGoogle Scholar
  100. 100.
    Simerly RB (1989) Hormonal control of the development and regulation of tyrosine hydroxylase expression within a sexually dimorphic population of dopaminergic cells in the hypothalamus. Mol Brain Res 6:297–310PubMedCrossRefGoogle Scholar
  101. 101.
    Ottem EN, Godwin JG, Krishnan S, Petersen SL (2004) Dual-phenotype GABA/glutamate neurons in adult preoptic area: sexual dimorphism and function. J Neurosci 24:8097–8105PubMedCrossRefGoogle Scholar
  102. 102.
    Liu X, Porteous R, d’Anglemont de Tassigny X, Colledge WH, Millar R, Petersen SL, Herbison AE (2011) Frequency-dependent recruitment of fast amino acid and slow neuropeptide neurotransmitter release controls gonadotropin-releasing hormone neuron excitability. J Neurosci 31:2421–2430PubMedCrossRefGoogle Scholar
  103. 103.
    Fu L-Y, van den Pol AN (2010) Kisspeptin directly excites anorexigenic ­proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an indirect synaptic mechanism. J Neurosci 30:10205–10219PubMedCrossRefGoogle Scholar
  104. 104.
    Leranth C, MacLusky NJ, Shanabrough M, Naftolin F (1988) Immunohistochemical evidence for synaptic connections between pro-opiomelanocortin-immunoreactive axons and LH-RH neurons in the preoptic area of the rat. Brain Res 449:167–176PubMedCrossRefGoogle Scholar
  105. 105.
    Chen W-P, Witkin JW, Silverman AJ (1989) b-endorphin and gonadotropin-releasing hormone synaptic input to gonadotropin-releasing hormone neurosecretory cells in the male rat. J Comp Neurol 286:85–95PubMedCrossRefGoogle Scholar
  106. 106.
    Thornton JE, Loose MD, Kelly MJ, Rønnekleiv OK (1994) Effects of estrogen on the number of neurons expressing b-endorphin in the medial basal hypothalamus of the female guinea pig. J Comp Neurol 341:68–77PubMedCrossRefGoogle Scholar
  107. 107.
    Zheng SX, Bosch MA, Rønnekleiv OK (2005) Mu-opioid receptor mRNA expression in identified hypothalamic neurons. J Comp Neurol 487:332–344PubMedCrossRefGoogle Scholar
  108. 108.
    Israel DD, Sheffer-Babila S, de Luca C, Jo Y-H, Lui SM, Xia Q, Spergel DJ, Dun SL, Dun NJ, Chua SC Jr (2012) Effects of leptin and melanocortin signaling interactions on pubertal development and reproduction. Endocrinology 153:1–11CrossRefGoogle Scholar
  109. 109.
    Bicknell RJ (1988) Optimizing release from peptide hormone secretory nerve terminals. J Exp Biol 139:51–65PubMedGoogle Scholar
  110. 110.
    Masterson SP, Li J, Bickford ME (2010) Frequency-dependent release of substance p mediates heterosynaptic potentiation of glutamatergic synaptic responses in the rat visual thalamus. J Neurophysiol 104:1758–1767PubMedCrossRefGoogle Scholar
  111. 111.
    Shakiryanova D, Tully A, Hewes RS, Deitcher DL, Levitan ES (2005) Activity-dependent liberation of synaptic neuropeptide vesicles. Nat Neurosci 8:173–178PubMedCrossRefGoogle Scholar
  112. 112.
    Kelly MJ, Condon TP, Levine JE, Rønnekleiv OK (1985) Combined electrophysiological, immunocytochemical and peptide release measurements in the hypothalamic slice. Brain Res 345:264–270PubMedCrossRefGoogle Scholar
  113. 113.
    Krsmanovic LZ, Stojikovic SS, Merelli F, Dufour SM, Virmani MA, Catt KJ (1992) Calcium signaling and episodic secretion of gonadotropin-releasing hormone in hypothalamic neurons. Proc Natl Acad Sci USA 89:8462–8466PubMedCrossRefGoogle Scholar
  114. 114.
    Constantin S, Caraty A, Wray S, Duittoz AH (2009) Development of gonadotropin-releasing hormone-1 secretion in mouse nasal explants. Endocrinology 150:3221–3227PubMedCrossRefGoogle Scholar
  115. 115.
    Lee K, Duan W, Sneyd J, Herbison AE (2010) Two slow calcium-activated afterhyperpolarization currents control burst firing dynamics in gonadotropin-releasing hormone neurons.J Neurosci 30:6214–6224PubMedCrossRefGoogle Scholar
  116. 116.
    Zhang X-B, Spergel DJ (2012) Kisspeptin inhibits high-voltage activated Ca2+ channels in GnRH neurons via multiple Ca2+ influx and release pathways. Neuroendocrinology 96:68–80PubMedCrossRefGoogle Scholar
  117. 117.
    Kato M, Ui-Tei K, Watanabe M, Sakuma Y (2003) Characterization of voltage-gated calcium currents in gonadotropin-releasing hormone neurons tagged with green fluorescent protein in rats. Endocrinology 144:5118–5125PubMedCrossRefGoogle Scholar
  118. 118.
    Zhang C, Bosch MA, Rick EA, Kelly MJ, Rønnekleiv OK (2009) 17b-estradiol regulation of T-type calcium channels in gonadotropin-releasing hormone neurons. J Neurosci 29:10552–10562PubMedCrossRefGoogle Scholar
  119. 119.
    Chu Z, Takagi H, Moenter SM (2010) Hyperpolarization-activated currents in gonadotropin-­releasing hormones (GnRH) neurons contribute to intrinsic excitability and are regulated by gonadal steroid feedback. J Neurosci 30:13373–13383PubMedCrossRefGoogle Scholar
  120. 120.
    Bosch MA, Tonsfeldt KJ, Ronnekleiv OK (2013) mRNA expression of ion channels in GnRH neurons subtype-specific regulation by 17beta-estradiol. Mol Cell Endocrinol. DOI 10.1016/j.mce.2012.12.021Google Scholar
  121. 121.
    Kelly MJ, Wagner EJ (2002) GnRH neurons and episodic bursting activity. Trends Endocrinol Metab 13:409–410PubMedCrossRefGoogle Scholar
  122. 122.
    Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68:1373–1383PubMedGoogle Scholar
  123. 123.
    Bosch MA, Kelly MJ, Rønnekleiv OK (2002) Distribution, neuronal co-localization and 17b-­E2 modulation of small conductance calcium-activated K+ channel (SK3) mRNA in the guinea pig brain. Endocrinology 143:1097–1107PubMedCrossRefGoogle Scholar
  124. 124.
    Kato M, Tanaka N, Usui S, Sakuma Y (2006) SK channel blocker apamin inhibits slow ­afterhyperpolarization currents in rat gonadotropin-releasing hormone neurones. J Physiol 574(2):431–442PubMedCrossRefGoogle Scholar
  125. 125.
    Liu X, Herbison AE (2008) Small-conductance calcium-activated potassium channels control excitability and firing dynamics in gonadotropin-releasing hormone (GnRH) neurons. Endocrinology 149:3598–3604PubMedCrossRefGoogle Scholar
  126. 126.
    Otsuguro K-I, Tang J, Tang Y, Xiao R, Freichel M, Tsvilovskyy V, Ito S, Flockerzi V, Zhu MX, Zholos AV (2008) Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 283:10026–10036PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Physiology and PharmacologyOregon Health and Science UniversityPortlandUSA

Personalised recommendations