Effects of Kisspeptin on Hormone Secretion in Humans

  • Yee-Ming ChanEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 784)


Studies of the actions of kisspeptin in human subjects have examined the effects of different kisspeptin isoforms, doses, and routes of administration on LH secretion, a surrogate measure of GnRH release. These studies, in addition to detailing how these different variables affect LH secretion in response to kisspeptin, have produced new insights into kisspeptin physiology: (1) Brief exposure to kisspeptin results in sustained GnRH release lasting ~17 min in men. (2) Women in different phases of the menstrual cycle have differences in their response to kisspeptin, suggesting that endogenous kisspeptin secretion and GnRH neuronal responsiveness vary in response to the changing sex-steroid environment across the menstrual cycle. (3) Kisspeptin resets the GnRH pulse generator in men, but does not appear to do so in women. (4) Continuous exposure to kisspeptin results in desensitization to kisspeptin, and thus kisspeptin has the potential to either stimulate or suppress reproductive endocrine activity depending on the mode of administration. These findings pave the way for future studies using kisspeptin as a physiologic, diagnostic, and therapeutic tool in both healthy adults and in patients with reproductive disorders.


GnRH Neuron Early Follicular Phase GnRH Secretion GnRH Pulse Hypothalamic Amenorrhea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 100:10972–10976PubMedCrossRefGoogle Scholar
  2. 2.
    Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627PubMedCrossRefGoogle Scholar
  3. 3.
    Funes S, Hedrick JA, Vassileva G, Markowitz L, Abbondanzo S, Golovko A, Yang S, Monsma FJ, Gustafson EL (2003) The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun 312:1357–1363PubMedCrossRefGoogle Scholar
  4. 4.
    Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617PubMedCrossRefGoogle Scholar
  5. 5.
    Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, Szekeres PG, Sarau HM, Chambers JK, Murdock P, Steplewski K, Shabon U, Miller JE, Middleton SE, Darker JG, Larminie CG, Wilson S, Bergsma DJ, Emson P, Faull R, Philpott KL, Harrison DC (2001) AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 276:28969–28975PubMedCrossRefGoogle Scholar
  6. 6.
    Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636PubMedCrossRefGoogle Scholar
  7. 7.
    Tovar S, Vazquez MJ, Navarro VM, Fernandez-Fernandez R, Castellano JM, Vigo E, Roa J, Casanueva FF, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M (2006) Effects of single or repeated intravenous administration of kisspeptin upon dynamic LH secretion in conscious male rats. Endocrinology 147:2696–2704PubMedCrossRefGoogle Scholar
  8. 8.
    Mikkelsen JD, Bentsen AH, Ansel L, Simonneaux V, Juul A (2009) Comparison of the effects of peripherally administered kisspeptins. Regul Pept 152:95–100PubMedCrossRefGoogle Scholar
  9. 9.
    Ramachandran R, Patterson M, Murphy KG, Dhillo WS, Patel S, Kazarian A, Ghatei MA, Bloom SR (2008) Preanalytical factors affecting RIA measurement of plasma kisspeptin. Clin Chem 54:615–617PubMedCrossRefGoogle Scholar
  10. 10.
    Ren C, Liu Z, Jones W, Chen P, Seminara S, Smith N, Covey J, Chan K (2007) An LC-MS/MS method for the quantitation of metastin 45-54 (NSC 741805) and its preclinical pharmacokinetics in rats. AAPS J
  11. 11.
    Chan YM, Butler JP, Pinnell NE, Pralong FP, Crowley WF Jr, Ren C, Chan KK, Seminara SB (2011) Kisspeptin resets the hypothalamic GnRH clock in men. J Clin Endocrinol Metab 96:E908–E915PubMedCrossRefGoogle Scholar
  12. 12.
    Tomita K, Niida A, Oishi S, Ohno H, Cluzeau J, Navenot JM, Wang ZX, Peiper SC, Fujii N (2006) Structure-activity relationship study on small peptidic GPR54 agonists. Bioorg Med Chem 14:7595–7603PubMedCrossRefGoogle Scholar
  13. 13.
    Dhillo WS, Chaudhri OB, Patterson M, Thompson EL, Murphy KG, Badman MK, McGowan BM, Amber V, Patel S, Ghatei MA, Bloom SR (2005) Kisspeptin-54 stimulates the hypothalamic-­pituitary gonadal axis in human males. J Clin Endocrinol Metab 90:6609–6615PubMedCrossRefGoogle Scholar
  14. 14.
    Jayasena CN, Nijher GM, Comninos AN, Abbara A, Januszewki A, Vaal ML, Sriskandarajah L, Murphy KG, Farzad Z, Ghatei MA, Bloom SR, Dhillo WS (2011) The effects of kisspeptin-­10 on reproductive hormone release show sexual dimorphism in humans. J Clin Endocrinol Metab 96:E1963–E1972PubMedCrossRefGoogle Scholar
  15. 15.
    Dhillo WS, Chaudhri OB, Thompson EL, Murphy KG, Patterson M, Ramachandran R, Nijher GK, Amber V, Kokkinos A, Donaldson M, Ghatei MA, Bloom SR (2007) Kisspeptin-54 stimulates gonadotropin release most potently during the preovulatory phase of the menstrual cycle in women. J Clin Endocrinol Metab 92:3958–3966PubMedCrossRefGoogle Scholar
  16. 16.
    Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA (2004) A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145:4073–4077PubMedCrossRefGoogle Scholar
  17. 17.
    Navarro VM, Castellano JM, Fernandez-Fernandez R, Barreiro ML, Roa J, Sanchez-Criado JE, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2004) Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 145:4565–4574PubMedCrossRefGoogle Scholar
  18. 18.
    Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MB, Colledge WH, Caraty A, Aparicio SA (2005) Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 102:1761–1766PubMedCrossRefGoogle Scholar
  19. 19.
    Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM (2005) Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci USA 102:2129–2134PubMedCrossRefGoogle Scholar
  20. 20.
    Levine JE, Pau KY, Ramirez VD, Jackson GL (1982) Simultaneous measurement of luteinizing hormone-releasing hormone and luteinizing hormone release in unanesthetized, ovariectomized sheep. Endocrinology 111:1449–1455PubMedCrossRefGoogle Scholar
  21. 21.
    Clarke IJ, Cummins JT (1982) The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology 111:1737–1739PubMedCrossRefGoogle Scholar
  22. 22.
    Spratt DI, Finkelstein JS, Butler JP, Badger TM, Crowley WF Jr (1987) Effects of increasing the frequency of low doses of gonadotropin-releasing hormone (GnRH) on gonadotropin secretion in GnRH-deficient men. J Clin Endocrinol Metab 64:1179–1186PubMedCrossRefGoogle Scholar
  23. 23.
    Hayes FJ, McNicholl DJ, Schoenfeld D, Marsh EE, Hall JE (1999) Free alpha-subunit is superior to luteinizing hormone as a marker of gonadotropin-releasing hormone despite desensitization at fast pulse frequencies. J Clin Endocrinol Metab 84:1028–1036PubMedCrossRefGoogle Scholar
  24. 24.
    George JT, Veldhuis JD, Roseweir AK, Newton CL, Faccenda E, Millar RP, Anderson RA (2011) Kisspeptin-10 is a potent stimulator of LH and increases pulse frequency in men. J Clin Endocrinol Metab 96:E1228–E1236PubMedCrossRefGoogle Scholar
  25. 25.
    Teles MG, Bianco SD, Brito VN, Trarbach EB, Kuohung W, Xu S, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC (2008) A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med 358:709–715PubMedCrossRefGoogle Scholar
  26. 26.
    d’Anglemont de Tassigny X, Fagg LA, Carlton MB, Colledge WH (2008) Kisspeptin can stimulate gonadotropin-releasing hormone (GnRH) release by a direct action at GnRH nerve terminals. Endocrinology 149:3926–3932PubMedCrossRefGoogle Scholar
  27. 27.
    Seminara SB, Dipietro MJ, Ramaswamy S, Crowley WF Jr, Plant TM (2006) Continuous human metastin 45-54 infusion desensitizes G protein-coupled receptor 54-induced gonadotropin-­releasing hormone release monitored indirectly in the juvenile male rhesus monkey (Macaca mulatta): a finding with therapeutic implications. Endocrinology 147:2122–2126PubMedCrossRefGoogle Scholar
  28. 28.
    Ramaswamy S, Seminara SB, Pohl CR, DiPietro MJ, Crowley WF Jr, Plant TM (2007) Effect of continuous intravenous administration of human metastin 45-54 on the neuroendocrine activity of the hypothalamic-pituitary-testicular axis in the adult male rhesus monkey (Macaca mulatta). Endocrinology 148:3364–3370PubMedCrossRefGoogle Scholar
  29. 29.
    Roa J, Vigo E, Garcia-Galiano D, Castellano JM, Navarro VM, Pineda R, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M (2008) Desensitization of gonadotropin responses to kisspeptin in the female rat: analyses of LH and FSH secretion at different developmental and metabolic states. Am J Physiol Endocrinol Metab 294:E1088–E1096PubMedCrossRefGoogle Scholar
  30. 30.
    Hall JE (2009) Neuroendocrine control of the menstrual cycle. In: Strauss JF III, Barbieri RL (eds) Yen and Jaffe’s reproductive endocrinology, 6th edn. Elsevier, Saunders, pp 139–154CrossRefGoogle Scholar
  31. 31.
    Chan YM, Butler JP, Sidhoum VF, Pinnell NE, Seminara SB (2012) Kisspeptin administration to women: a window into endogenous kisspeptin secretion and GnRH responsiveness across the menstrual cycle. J Clin Endocrinol Metab 97(8):E1458–E1467PubMedCrossRefGoogle Scholar
  32. 32.
    Bremner WJ, Paulsen CA (1974) Two pools of luteinizing hormone in the human pituitary: evidence from constant administration of luteinizing hormone-releasing hormone. J Clin Endocrinol Metab 39:811–815PubMedCrossRefGoogle Scholar
  33. 33.
    Casper RF, Sheehan KL, Yen SS (1980) Gonadotropin-estradiol responses to a superactive luteinizing hormone-releasing hormone agonist in women. J Clin Endocrinol Metab 50:179–181PubMedCrossRefGoogle Scholar
  34. 34.
    Yen SS (1975) Gonadotropin-releasing hormone. Annu Rev Med 26:403–417PubMedCrossRefGoogle Scholar
  35. 35.
    Novaira HJ, Ng Y, Wolfe A, Radovick S (2009) Kisspeptin increases GnRH mRNA expression and secretion in GnRH secreting neuronal cell lines. Mol Cell Endocrinol 311:126–134PubMedCrossRefGoogle Scholar
  36. 36.
    Tonsfeldt KJ, Goodall CP, Latham KL, Chappell PE (2011) Oestrogen induces rhythmic expression of the Kisspeptin-1 receptor GPR54 in hypothalamic gonadotrophin-releasing hormone-­secreting GT1-7 cells. J Neuroendocrinol 23:823–830PubMedCrossRefGoogle Scholar
  37. 37.
    Guerriero KA, Keen KL, Millar RP, Terasawa E (2012) Developmental changes in GnRH release in response to kisspeptin agonist and antagonist in female rhesus monkeys (Macaca mulatta): implication for the mechanism of puberty. Endocrinology 153:825–836PubMedCrossRefGoogle Scholar
  38. 38.
    Guerriero KA, Keen KL, Terasawa E (2012) Developmental increase in kisspeptin-54 release in vivo is independent of the pubertal increase in estradiol in female rhesus monkeys (Macaca mulatta). Endocrinology 153:1887–1897PubMedCrossRefGoogle Scholar
  39. 39.
    Gordon CM (2010) Clinical practice. Functional hypothalamic amenorrhea. N Engl J Med 363:365–371PubMedCrossRefGoogle Scholar
  40. 40.
    Castellano JM, Navarro VM, Fernandez-Fernandez R, Nogueiras R, Tovar S, Roa J, Vazquez MJ, Vigo E, Casanueva FF, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M (2005) Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology 146:3917–3925PubMedCrossRefGoogle Scholar
  41. 41.
    Iwasa T, Matsuzaki T, Murakami M, Shimizu F, Kuwahara A, Yasui T, Irahara M (2008) Decreased expression of kisspeptin mediates acute immune/inflammatory stress-induced suppression of gonadotropin secretion in female rat. J Endocrinol Invest 31:656–659PubMedGoogle Scholar
  42. 42.
    Kinsey-Jones JS, Li XF, Knox AM, Wilkinson ES, Zhu XL, Chaudhary AA, Milligan SR, Lightman SL, O’Byrne KT (2009) Down-regulation of hypothalamic kisspeptin and its receptor, Kiss1r, mRNA expression is associated with stress-induced suppression of luteinising hormone secretion in the female rat. J Neuroendocrinol 21:20–29PubMedCrossRefGoogle Scholar
  43. 43.
    Jayasena CN, Nijher GM, Chaudhri OB, Murphy KG, Ranger A, Lim A, Patel D, Mehta A, Todd C, Ramachandran R, Salem V, Stamp GW, Donaldson M, Ghatei MA, Bloom SR, Dhillo WS (2009) Subcutaneous injection of kisspeptin-54 acutely stimulates gonadotropin secretion in women with hypothalamic amenorrhea, but chronic administration causes tachyphylaxis. J Clin Endocrinol Metab 94:4315–4323PubMedCrossRefGoogle Scholar
  44. 44.
    Balasubramanian R, Crowley WF Jr (2011) Isolated GnRH deficiency: a disease model serving as a unique prism into the systems biology of the GnRH neuronal network. Mol Cell Endocrinol 346:4–12PubMedCrossRefGoogle Scholar
  45. 45.
    Young J, George JT, Tello JA, Francou B, Bouligand J, Guiochon-Mantel A, Brailly-Tabard S, Anderson RA, Millar RP (2012) Kisspeptin restores pulsatile LH secretion in patients with neurokinin B signaling deficiencies: physiological, pathophysiological and therapeutic Implications. Neuroendocrinology 2012 Feb 24 [To appear]Google Scholar
  46. 46.
    Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Ozbek MN, Imamoglu S, Akalin NS, Yuksel B, O’Rahilly S, Semple RK (2009) TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet 41:354–358PubMedCrossRefGoogle Scholar
  47. 47.
    Gianetti E, Tusset C, Noel SD, Au MG, Dwyer AA, Hughes VA, Abreu AP, Carroll J, Trarbach E, Silveira LF, Costa EM, de Mendonca BB, de Castro M, Lofrano A, Hall JE, Bolu E, Ozata M, Quinton R, Amory JK, Stewart SE, Arlt W, Cole TR, Crowley WF, Kaiser UB, Latronico AC, Seminara SB (2010) TAC3/TACR3 mutations reveal preferential activation of gonadotropin-­releasing hormone release by neurokinin B in neonatal life followed by reversal in adulthood. J Clin Endocrinol Metab 95:2857–2867PubMedCrossRefGoogle Scholar
  48. 48.
    Young J, Bouligand J, Francou B, Raffin-Sanson ML, Gaillez S, Jeanpierre M, Grynberg M, Kamenicky P, Chanson P, Brailly-Tabard S, Guiochon-Mantel A (2010) TAC3 and TACR3 defects cause hypothalamic congenital hypogonadotropic hypogonadism in humans. J Clin Endocrinol Metab 95:2287–2295PubMedCrossRefGoogle Scholar
  49. 49.
    Ramaswamy S, Seminara SB, Plant TM (2011) Evidence from the agonadal juvenile male rhesus monkey (Macaca mulatta) for the view that the action of neurokinin B to trigger gonadotropin-­releasing hormone release is upstream from the kisspeptin receptor. Neuroendocrinology 94:237–245PubMedCrossRefGoogle Scholar
  50. 50.
    Topaloglu AK, Tello JA, Kotan LD, Ozbek MN, Yilmaz MB, Erdogan S, Gurbuz F, Temiz F, Millar RP, Yuksel B (2012) Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med 366:629–635PubMedCrossRefGoogle Scholar
  51. 51.
    Crowley WF Jr, Whitcomb RW, Jameson JL, Weiss J, Finkelstein JS, O’Dea LS (1991) Neuroendocrine control of human reproduction in the male. Recent Prog Horm Res 47:27–62; discussion 62–67PubMedGoogle Scholar
  52. 52.
    Pralong FP, Boepple PA, Conn PM, Whitcomb RW, Butler JP, Schoenfeld D, Crowley WF Jr (1996) Contour of the GnRH pulse independently modulates gonadotropin secretion in the human male. Neuroendocrinology 64:247–256PubMedCrossRefGoogle Scholar
  53. 53.
    Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE (2005) Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 25:11349–11356PubMedCrossRefGoogle Scholar
  54. 54.
    Pielecka-Fortuna J, Chu Z, Moenter SM (2008) Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology 149:1979–1986PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang C, Roepke TA, Kelly MJ, Ronnekleiv OK (2008) Kisspeptin depolarizes gonadotropin-­releasing hormone neurons through activation of TRPC-like cationic channels. J Neurosci 28:4423–4434PubMedCrossRefGoogle Scholar
  56. 56.
    Dumalska I, Wu M, Morozova E, Liu R, van den Pol A, Alreja M (2008) Excitatory effects of the puberty-initiating peptide kisspeptin and group I metabotropic glutamate receptor agonists differentiate two distinct subpopulations of gonadotropin-releasing hormone neurons. J Neurosci 28:8003–8013PubMedCrossRefGoogle Scholar
  57. 57.
    Constantin S, Caligioni CS, Stojilkovic S, Wray S (2009) Kisspeptin-10 facilitates a plasma membrane-driven calcium oscillator in gonadotropin-releasing hormone-1 neurons. Endocrinology 150:1400–1412PubMedCrossRefGoogle Scholar
  58. 58.
    Steiner RA, Clifton D (2009) Neuroendocrinology of reproduction. In: Strauss JF III, Barbieri RL (eds) Yen and Jaffe’s reproductive endocrinology: physiology, pathophysiology, and clinical management. Saunders, Philadelphia, pp 3–33Google Scholar
  59. 59.
    Maeda K, Ohkura S, Uenoyama Y, Wakabayashi Y, Oka Y, Tsukamura H, Okamura H (2010) Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. Brain Res 1364:103–115PubMedCrossRefGoogle Scholar
  60. 60.
    Marshall JC, Dalkin AC, Haisenleder DJ, Griffin ML, Kelch RP (1993) GnRH pulses—the regulators of human reproduction. Trans Am Clin Climatol Assoc 104:31–46PubMedGoogle Scholar
  61. 61.
    Butler JP, Spratt DI, O’Dea LS, Crowley WF Jr (1986) Interpulse interval sequence of LH in normal men essentially constitutes a renewal process. Am J Physiol 250:E338–E340PubMedGoogle Scholar
  62. 62.
    Santoro N, Butler JP, Filicori M, Crowley WF Jr (1988) Alterations of the hypothalamic GnRH interpulse interval sequence over the normal menstrual cycle. Am J Physiol 255:E696–E701PubMedGoogle Scholar
  63. 63.
    Jayasena CN, Nijher GM, Abbara A, Murphy KG, Lim A, Patel D, Mehta A, Todd C, Donaldson M, Trew GH, Ghatei MA, Bloom SR, Dhillo WS (2010) Twice-weekly administration of kisspeptin-54 for 8 weeks stimulates release of reproductive hormones in women with hypothalamic amenorrhea. Clin Pharmacol Ther 88:840–847PubMedCrossRefGoogle Scholar
  64. 64.
    Keen KL, Wegner FH, Bloom SR, Ghatei MA, Terasawa E (2008) An increase in kisspeptin-54 release occurs with the pubertal increase in luteinizing hormone-releasing hormone-1 release in the stalk-median eminence of female rhesus monkeys in vivo. Endocrinology 149:4151–4157PubMedCrossRefGoogle Scholar
  65. 65.
    Smith JT, Rao A, Pereira A, Caraty A, Millar RP, Clarke IJ (2008) Kisspeptin is present in ovine hypophysial portal blood but does not increase during the preovulatory luteinizing hormone surge: evidence that gonadotropes are not direct targets of kisspeptin in vivo. Endocrinology 149:1951–1959PubMedCrossRefGoogle Scholar
  66. 66.
    Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E (1978) Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science 202:631–633PubMedCrossRefGoogle Scholar
  67. 67.
    Nijher GM, Chaudhri OB, Ramachandran R, Murphy KG, Zac-Varghese SE, Fowler A, Chinthapalli K, Patterson M, Thompson EL, Williamson C, Kumar S, Ghatei MA, Bloom SR, Dhillo WS (2010) The effects of kisspeptin-54 on blood pressure in humans and plasma kisspeptin concentrations in hypertensive diseases of pregnancy. Br J Clin Pharmacol 70:674–681PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Division of Endocrinology, Department of MedicineBoston Children’s HospitalBostonUSA
  2. 2.Reproductive Endocrine Unit and Harvard Reproductive Sciences Center, Department of MedicineMassachusetts General HospitalBostonUSA

Personalised recommendations