Small-Cell Lung Cancer: An Update on Targeted Therapies

Part of the Advances in Experimental Medicine and Biology book series (volume 779)


Lung cancer is the leading cause of cancer-related deaths world-wide and small-cell lung cancer (SCLC) accounts for up to 25% of lung cancer deaths. There has been a considerable amount of research in the understanding of the depth of biology of SCLC and utilizing this knowledge to develop targeted approaches. The treatment of SCLC remains a challenge, despite remarkable initial efficacy to combination chemotherapy and radiation therapy. The response is usually short-lived and the prognosis of SCLC has not changed over the past few decades, necessitating the critical need for evaluating novel agents/therapies. Several signaling pathways have been found to be activated in SCLC tumor cells, forming a rationale for blocking some of the drugable targets. Molecular changes and biological markers have been identified but remain to be validated. Novel and targeted agents have been evaluated but without much success. Increasing understanding of the biology and potential clinical evaluation of biomarkers will pave the way for more effective treatments.


Small cell lung cancer Keratin Etoposide Topotecan Irinotecan Docetaxel Gemcitabine 3p21.3 RASSFIA myc NFkB c-Met HGF VEGF IGF-1 GRP FRAP Thalidomide Carboplatin Bevacizumab Cisplatin Sorafenib Cediranib Vandetanib Aflibercept c-kit EGFR TKI bcr-abl Imatinib Gefitinib mTOR Everolimus Ganitumab Dasatinib Obatoclax HDAC inhibitor Hedgehog inhibitor Bendamustine Ifosfamide Circulating tumor cells 


  1. 1.
    Society AC. Cancer facts and figures 2007. Atlanta: American Cancer Society; 2007.Google Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.PubMedCrossRefGoogle Scholar
  3. 3.
    Navada S, Lai P, Schwartz AG, Kalemkerian GP. Temporal trends in small cell lung cancer: analysis of the national Surveillance, Epidemiology, and End-Results (SEER) database. J Clin Oncol. 2006;24:7082. 2006 ASCO Annual Meeting Proceedings Part I. 2006, (June 20 Supplement).Google Scholar
  4. 4.
    Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24(28):4539–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Kelly K. Treatment of extensive stage small cell lung cancer. Cancer Treat Res. 2001;105:253–76.PubMedCrossRefGoogle Scholar
  6. 6.
    Thatcher N, Eckardt J, Green M. Options for first- and second-line therapy in small cell lung cancer—a workshop discussion. Lung Cancer. 2003;41(Suppl 4):S37–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Chiappori AA, Rocha-Lima CM. New agents in the treatment of small-cell lung cancer: focus on gemcitabine. Clin Lung Cancer. 2003;4(Suppl 2):S56–63.PubMedCrossRefGoogle Scholar
  8. 8.
    Ardizzoni A, Hansen H, Dombernowsky P, Gamucci T, Kaplan S, Postmus P, et al. Topotecan, a new active drug in the second-line treatment of small-cell lung cancer: a phase II study in patients with refractory and sensitive disease. The European Organization for Research and Treatment of Cancer Early Clinical Studies Group and New Drug Development Office, and the Lung Cancer Cooperative Group. J Clin Oncol. 1997;15(5):2090–6.PubMedGoogle Scholar
  9. 9.
    Wistuba II, Behrens C, Virmani AK, Mele G, Milchgrub S, Girard L, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res. 2000;60(7):1949–60.PubMedGoogle Scholar
  10. 10.
    Tammemagi MC, McLaughlin JR, Bull SB. Meta-analyses of p53 tumor suppressor gene alterations and clinicopathological features in resected lung cancers. Cancer Epidemiol Biomarkers Prev. 1999;8(7):625–34.PubMedGoogle Scholar
  11. 11.
    Hainaut P, Hernandez T, Robinson A, Rodriguez-Tome P, Flores T, Hollstein M, et al. IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res. 1998;26(1):205–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Casey G, Lopez ME, Ramos JC, Plummer SJ, Arboleda MJ, Shaughnessy M, et al. DNA sequence analysis of exons 2 through 11 and immunohistochemical staining are required to detect all known p53 alterations in human malignancies. Oncogene. 1996;13(9):1971–81.PubMedGoogle Scholar
  13. 13.
    Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet. 2000;25(3):315–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Richardson GE, Johnson BE. The biology of lung cancer. Semin Oncol. 1993;20(2):105–27.PubMedGoogle Scholar
  15. 15.
    Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC. Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bcl-2 gene expression. Antisense Res Dev. 1994;4(2):71–9.PubMedGoogle Scholar
  16. 16.
    Ewen ME. The cell cycle and the retinoblastoma protein family. Cancer Metastasis Rev. 1994;13(1):45–66.PubMedCrossRefGoogle Scholar
  17. 17.
    Wistuba II, Gazdar AF, Minna JD. Molecular genetics of small cell lung carcinoma. Semin Oncol. 2001;28(2 Suppl 4):3–13.PubMedCrossRefGoogle Scholar
  18. 18.
    Ma PC, Tretiakova MS, Nallasura V, Jagadeeswaran R, Husain AN, Salgia R. Downstream signalling and specific inhibition of c-MET/HGF pathway in small cell lung cancer: implications for tumour invasion. Br J Cancer. 2007;97(3):368–77.PubMedCrossRefGoogle Scholar
  19. 19.
    Rygaard K, Nakamura T, Spang-Thomsen M. Expression of the proto-oncogenes c-met and c-kit and their ligands, hepatocyte growth factor/scatter factor and stem cell factor, in SCLC cell lines and xenografts. Br J Cancer. 1993;67(1):37–46.PubMedCrossRefGoogle Scholar
  20. 20.
    Ma PC, Kijima T, Maulik G, Fox EA, Sattler M, Griffin JD, et al. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 2003;63(19):6272–81.PubMedGoogle Scholar
  21. 21.
    Bharti A, Ma PC, Maulik G, Singh R, Khan E, Skarin AT, et al. Haptoglobin alpha-subunit and hepatocyte growth factor can potentially serve as serum tumor biomarkers in small cell lung cancer. Anticancer Res. 2004;24(2C):1031–8.PubMedGoogle Scholar
  22. 22.
    Wójcik E, Jakubowicz J, Skotnicki P, Sas-Korczyńska B, Kulpa JK. IL-6 and VEGF in small cell lung cancer patients. Anticancer Res. 2010;30(5):1773–8.PubMedGoogle Scholar
  23. 23.
    Damstrup L, Rygaard K, Spang-Thomsen M, Poulsen HS. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines. Cancer Res. 1992;52(11):3089–93.PubMedGoogle Scholar
  24. 24.
    Yabu T, Tomimoto H, Taguchi Y, Yamaoka S, Igarashi Y, Okazaki T. Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate. Blood. 2005;106(1):125–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Pujol JL, Breton JL, Gervais R, Tanguy M-L, Quoix E, David P, et al. Phase III double-blind, placebo-controlled study of thalidomide in extensive-disease small-cell lung cancer after response to chemotherapy: an intergroup study FNCLCC cleo04 IFCT 00-01. J Clin Oncol. 2007;25(25):3945–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee SM, Woll PJ, Rudd R, Ferry D, O’Brien M, Middleton G, et al. Anti-angiogenic therapy using thalidomide combined with chemotherapy in small cell lung cancer: a randomized, double-blind, placebo-controlled trial. J Natl Cancer Inst. 2009;101(15):1049–57.PubMedCrossRefGoogle Scholar
  27. 27.
    Patton JF, Spigel DR, Greco FA, Liggett WH, Zubkus JD, Baskette M, et al. Irinotecan (I), carboplatin (C), and radiotherapy (RT) followed by maintenance bevacizumab (B) in the treatment (tx) of limited-stage small cell lung cancer (LS-SCLC): update of a phase II trial of the Minnie Pearl Cancer Research Network. J Clin Oncol. 2006;24(18S):7085. 2006 ASCO Annual Meeting Proceedings Part I. 2006, (June 20 Supplement).Google Scholar
  28. 28.
    Genentech Letter: Important drug warning regarding Avastin (bevacizumab)., April, 2007.
  29. 29.
    Ready NE, Dudek AZ, Pang HH, Hodgson LD, Graziano SL, Green MR, et al. Cisplatin, irinotecan, and bevacizumab for untreated extensive-stage small-cell lung cancer: CALGB 30306, a phase II study. J Clin Oncol. 2011;29(33):4436–41.PubMedCrossRefGoogle Scholar
  30. 30.
    Sandler A, Szwaric S, Dowlati A, Moore DF, Schiller JH. A phase II study of cisplatin (P) plus etoposide (E) plus bevacizumab (B) for previously untreated extensive stage small cell lung cancer (SCLC) (E3501): A trial of the Eastern Cooperative Oncology Group. J Clin Oncol (Meeting Abstracts) June 2007, 25(18_suppl), 7564Google Scholar
  31. 31.
    Spigel DR, Townley PM, Waterhouse DM, Fang L, Adiguzel I, Huang JE, et al. Randomized phase II study of bevacizumab in combination with chemotherapy in previously untreated extensive-stage small-cell lung cancer: results from the SALUTE trial. J Clin Oncol. 2011;29(16):2215–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Herbst RS, Onn A, Sandler A. Angiogenesis and lung cancer: prognostic and therapeutic implications. J Clin Oncol. 2005;23(14):3243–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Gitlitz BJ, Glisson BS, Moon J, Reimers H, Gandara DR. Sorafenib in patients with platinum (plat) treated extensive stage small cell lung cancer (E-SCLC): A SWOG (S0435) phase II trial. ASCO annual meeting 2008. J Clin Oncol 26: 2008 (May 20 suppl; abstr 8039).Google Scholar
  34. 34.
    Wedge SR, Kendrew J, Hennequin LF, Valentine PJ, Barry ST, Brave SR, et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 2005;65(10):4389–400.PubMedCrossRefGoogle Scholar
  35. 35.
    Ramalingam SS, Belani CP, Mack PC, Vokes EE, Longmate J, Govindan R, et al. Phase II study of Cediranib (AZD 2171), an inhibitor of the vascular endothelial growth factor receptor, for second-line therapy of small cell lung cancer (National Cancer Institute #7097). J Thorac Oncol. 2010;5(8):1279–84.PubMedCrossRefGoogle Scholar
  36. 36.
    Arnold AM, Seymour L, Smylie M, Ding K, Ung Y, Findlay B, et al. Phase II study of vandetanib or placebo in small-cell lung cancer patients after complete or partial response to induction chemotherapy with or without radiation therapy: National Cancer Institute of Canada clinical trials group study BR.20. J Clin Oncol. 2007;25(27):4278–84.PubMedCrossRefGoogle Scholar
  37. 37.
    Eichholz A, Merchant S, Gaya AM. Anti-angiogenesis therapies: their potential in cancer management. Onco Targets Ther. 2010;3:69–82.PubMedGoogle Scholar
  38. 38.
    Potti A, Moazzam N, Ramar K, Hanekom DS, Kargas S, Koch M. CD117 (c-KIT) overexpression in patients with extensive-stage small-cell lung carcinoma. Ann Oncol. 2003;14(6):894–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Johnson BE, Fischer T, Fischer B, Dunlop D, Rischin D, Silberman S, et al. Phase II study of imatinib in patients with small cell lung cancer. Clin Cancer Res. 2003;9(16 Pt 1):5880–7.PubMedGoogle Scholar
  40. 40.
    Krug LM, Crapanzano JP, Azzoli CG, Miller VA, Rizvi N, Gomez J, et al. Imatinib mesylate lacks activity in small cell lung carcinoma expressing c-kit protein: a phase II clinical trial. Cancer. 2005;103(10):2128–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Schneider BJ, Gadgeel S, Ramnath N, Worden FP, Wozniak A, Ruckdeschel J, et al. Phase II trial of imatinib maintenance therapy after irinotecan and cisplatin in patients with c-kit positive extensive-stage small cell lung cancer J Clin Oncol (Meeting Abstracts) June 2006 24(18_suppl 17089). 2006.Google Scholar
  42. 42.
    Spigel DR, Hainsworth JD, Simons L, Meng C, Burris 3rd HA, Yardley DA, et al. Irinotecan, carboplatin, and imatinib in untreated extensive-stage small-cell lung cancer: a phase II trial of the Minnie Pearl Cancer Research Network. J Thorac Oncol. 2007;2(9):854–61.PubMedCrossRefGoogle Scholar
  43. 43.
    Glisson BS. Targeting an autocrine loop in small-cell lung cancer: irrelevant target or ­ineffective drug? Clin Lung Cancer. 2010;11(4):222. © 2010 other.PubMedCrossRefGoogle Scholar
  44. 44.
    Cappuzzo F, Ciuleanu T, Stelmakh L, Cicenas S, Szczesna A, Juhasz E, et al. SATURN: A double-blind, randomized, phase III study of maintenance erlotinib versus placebo following nonprogression with first-line platinum-based chemotherapy in patients with advanced NSCLC. J Clin Oncol. 2009;27(15 s,):suppl; abstr 8001.Google Scholar
  45. 45.
    Tatematsu A, Shimizu J, Murakami Y, Horio Y, Nakamura S, Hida T, et al. Epidermal growth factor receptor mutations in small cell lung cancer. Clin Cancer Res. 2008;14(19):6092–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Moore AM, Einhorn LH, Estes D, Govindan R, Axelson J, Vinson J, et al. Gefitinib in patients with chemo-sensitive and chemo-refractory relapsed small cell cancers: a Hoosier Oncology Group phase II trial. Lung Cancer. 2006;52(1):93–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Maulik G, Kijima T, Ma PC, Ghosh SK, Lin J, Shapiro GI, et al. Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin Cancer Res. 2002;8(2):620–7.PubMedGoogle Scholar
  48. 48.
    Bonnie S, Glisson M. First-line therapy of small-cell lung cancer with platinum-based chemotherapy plus AMG 479 or AMG 102. Commun Oncol. 2009;6(suppl 1):1–4. © 2009 Elsevier Inc.Google Scholar
  49. 49.
    NCT00791154-A Phase 1b/2 Trial of AMG 479 or AMG 102 in combination with platinum-based chemotherapy as first-line treatment for extensive stage small cell lung cancer.
  50. 50.
    Arcaro A, Khanzada UK, Vanhaesebroeck B, Tetley TD, Waterfield MD, Seckl MJ. Two distinct phosphoinositide 3-kinases mediate polypeptide growth factor-stimulated PKB activation. EMBO J. 2002;21(19):5097–108. doi: 10.1093/emboj/cdf512.PubMedCrossRefGoogle Scholar
  51. 51.
    Marin M, Algirdas Z, Pardo OE, et al. AKT/mTOR pathway activation and BCL-2 family proteins modulate the sensitivity of human small cell lung cancer cells to RAD001. Clin Cancer Res. 2009;15(4):1227–86.Google Scholar
  52. 52.
    Tarhini A, Kotsakis A, Gooding W, Shuai Y, Petro D, Friedland D, et al. Phase II study of everolimus (RAD001) in previously treated small cell lung cancer. Clin Cancer Res. 2010;16(23):5900–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Owonikoko TK, Stoller RG, Petro D, Flaugh R, Hershberger PA, Belani CP, et al. Phase II study of RAD001 (Everolimus) in previously treated small cell lung cancer (SCLC). J Clin Oncol (Meeting Abstracts). May 2008;26(15_suppl 19017).Google Scholar
  54. 54.
    Pandya KJ, Dahlberg S, Hidalgo M, Cohen RB, Lee MW, Schiller JH, et al. A randomized, phase II trial of two dose levels of temsirolimus (CCI-779) in patients with extensive-stage small-cell lung cancer who have responding or stable disease after induction chemotherapy: a trial of the Eastern Cooperative Oncology Group (E1500). J Thorac Oncol. 2007;2(11):1036–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Kulik G, Klippel A, Weber MJ. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol. 1997;17(3):1595–606.PubMedGoogle Scholar
  56. 56.
    Warshamana-Greene GS, Litz J, Buchdunger E, Hofmann F, Garcia-Echeverria C, Krystal GW. The insulin-like growth factor-I (IGF-I) receptor kinase inhibitor NVP-ADW742, in combination with STI571, delineates a spectrum of dependence of small cell lung cancer on IGF-I and stem cell factor signaling. Mol Cancer Ther. 2004;3(5):527–35.PubMedGoogle Scholar
  57. 57.
    Miller AA, Pang H, Hodgson L, Ramnath N, Otterson GA, Kelley MJ, et al. A phase II study of dasatinib in patients with chemosensitive relapsed small cell lung cancer (cancer and leukemia group B 30602). J Thorac Oncol. 2010;5(3):380–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Roelle S, Grosse R, Buech T, Chubanov V, Gudermann T. Essential role of Pyk2 and Src kinase activation in neuropeptide-induced proliferation of small cell lung cancer cells. Oncogene. 2008;27(12):1737–48.PubMedCrossRefGoogle Scholar
  59. 59.
    Rosen N, Bolen JB, Schwartz AM, Cohen P, DeSeau V, Israel MA. Analysis of pp 60c-src protein kinase activity in human tumor cell lines and tissues. J Biol Chem. 1986;261(29):13754–9.PubMedGoogle Scholar
  60. 60.
    Jiang SX, Sato Y, Kuwao S, Kameya T. Expression of bcl-2 oncogene protein is prevalent in small cell lung carcinomas. J Pathol. 1995;177(2):135–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Hurwitz JL, McCoy F, Scullin P, Fennell DA. New advances in the second-line treatment of small cell lung cancer. Oncologist. 2009;14(10):986–94.PubMedCrossRefGoogle Scholar
  62. 62.
    Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol. 1997;139(5):1281–92.PubMedCrossRefGoogle Scholar
  63. 63.
    Huang DC, Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell. 2000;103(6):839–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Rudin CM, Salgia R, Wang X, Hodgson LD, Masters GA, Green M, et al. Randomized phase II Study of carboplatin and etoposide with or without the bcl-2 antisense oligonucleotide oblimersen for extensive-stage small-cell lung cancer: CALGB 30103. J Clin Oncol. 2008;26(6):870–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Langer CJ, Albert PKI, Blakely LJ, Pajkos G, Petrov P, Somfay A, et al. A randomized phase II study of carboplatin (C) and etoposide (E) with or without pan-BCL-2 antagonist obatoclax (Ob) in extensive-stage small cell lung cancer (ES-SCLC). J Clin Oncol. 2011; 29(suppl; abstr 7001). 2011 ASCO Annual Meeting.Google Scholar
  66. 66.
    Bruzzese F, Rocco M, Castelli S, Di Gennaro E, Desideri A, Budillon A. Synergistic antitumor effect between vorinostat and topotecan in small cell lung cancer cells is mediated by generation of reactive oxygen species and DNA damage-induced apoptosis. Mol Cancer Ther. 2009;8(11):3075–87.PubMedCrossRefGoogle Scholar
  67. 67.
    Gray J, Cubitt CL, Zhang S, Chiappori A. Combination of HDAC and topoisomerase inhibitors in small cell lung cancer. Cancer Biol Ther. 2012;13(8):614–22.PubMedCrossRefGoogle Scholar
  68. 68.
    NCT00702962-Carboplatin and etoposide in combination with vorinostat for patients with extensive stage small cell lung cancer.
  69. 69.
    NCT00926640-A phase I study of belinostat in combination with cisplatin and etoposide in adults with small cell lung carcinoma and other advanced cancers.
  70. 70.
    Watkins DN, Berman DM, Baylin SB. Hedgehog signaling: progenitor phenotype in small-cell lung cancer. Cell Cycle. 2003;2(3):196–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Park KS, Martelotto LG, Peifer M, Sos ML, Karnezis AN, Mahjoub MR, et al. A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat Med. 2011;17(11):1504–8.PubMedCrossRefGoogle Scholar
  72. 72.
    NCT00887159-Cisplatin and etoposide phosphate with or without gdc-0449 or cixutumumab in treating patients with extensive-stage small cell lung cancer.
  73. 73.
    Leoni LM, Bailey B, Reifert J, Bendall HH, Zeller RW, Corbeil J, et al. Bendamustine (Treanda) displays a distinct pattern of cytotoxicity and unique mechanistic features compared with other alkylating agents. Clin Cancer Res. 2008;14(1):309–17.PubMedCrossRefGoogle Scholar
  74. 74.
    Koster W, Heider A, Niederle N, Wilke H, Stamatis G, Fischer JR, et al. Phase II trial with carboplatin and bendamustine in patients with extensive stage small-cell lung cancer. J Thorac Oncol. 2007;2(4):312–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Venepalli NK, Hutchison AS, Carbone DP, Johnson DH, Keedy VL, Pao W, et al. A phase II study of second-line bendamustine in relapsed or refractory small cell lung cancer (SCLC). J Clin Oncol. 2011; 29: (suppl; abstr e17505) [serial on the Internet].Google Scholar
  76. 76.
    Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(19):3213–21.PubMedCrossRefGoogle Scholar
  77. 77.
    Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91.PubMedCrossRefGoogle Scholar
  78. 78.
    de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 2008;14(19):6302–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Krebs MG, Sloane R, Priest L, Lancashire L, Hou JM, Greystoke A, et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol. 2011;29(12):1556–63.PubMedCrossRefGoogle Scholar
  80. 80.
    Kularatne BY, Lorigan P, Browne S, Suvarna SK, Smith MO, Lawry J. Monitoring tumour cells in the peripheral blood of small cell lung cancer patients. Cytometry. 2002;50(3):160–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Hou JM, Greystoke A, Lancashire L, Cummings J, Ward T, Board R, et al. Evaluation of circulating tumor cells and serological cell death biomarkers in small cell lung cancer patients undergoing chemotherapy. Am J Pathol. 2009;175(2):808–16.PubMedCrossRefGoogle Scholar
  82. 82.
    Hou JM, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK, et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol. 2012;30(5):525–32.PubMedCrossRefGoogle Scholar
  83. 83.
    Naito T, Tanaka F, Ono A, Yoneda K, Takahashi T, Murakami H, et al. Prognostic impact of ­circulating tumor cells in patients with small cell lung cancer. J Thorac Oncol. 2012;7(3):512–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Bogos K, Renyi-Vamos F, Dobos J, Kenessey I, Tovari J, Timar J, et al. High VEGFR-3-positive circulating lymphatic/vascular endothelial progenitor cell level is associated with poor prognosis in human small cell lung cancer. Clin Cancer Res. 2009;15(5):1741–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Yang X, Wang D, Yang Z, Qing Y, Zhang Z, Wang G, et al. CEA is an independent prognostic indicator that is associated with reduced survival and liver metastases in SCLC. Cell Biochem Biophys. 2011;59(2):113–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Pujol JL, Quantin X, Jacot W, Boher JM, Grenier J, Lamy PJ. Neuroendocrine and cytokeratin serum markers as prognostic determinants of small cell lung cancer. Lung Cancer. 2003;39(2):131–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Monika Joshi
    • 1
  • Ayodele Ayoola
    • 1
  • Chandra P. Belani
    • 1
  1. 1.Department of MedicinePenn State Hershey Medical CenterHersheyUSA

Personalised recommendations