Nasopharyngeal Carcinoma Immunotherapy: Current Strategies and Perspectives

  • Corey Smith
  • Rajiv Khanna
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 778)


Recent success in treating Epstein-Barr virus (EBV)-associated posttransplant lymphoproliferative disorder (PTLD) using cytotoxic T-cell (CTL) based immunotherapy has led to interest in the development of CTL-based immunotherapy to treat other EBV-associated malignancies, including Nasopharyngeal carcinoma (NPC). However unlike PTLD, which arises in immunosuppressed individuals following transplant, NPC can arise in immunocompetent individuals, expresses a limited array of EBV antigens that are poorly immunogenic, and appear to suppress the function of these T cells either directly or through the expansion of regulatory T cells. There is therefore a unique set of problems that need to be addressed in order to optimise CTL-therapy for the effective treatment of NPC.


Nasopharyngeal Carcinoma Adoptive Immunotherapy Modify Vaccinia Ankara Metastatic Nasopharyngeal Carcinoma Polyepitope Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ochsenbein AF. Principles of tumor immunosurveillance and implications for immunotherapy. Cancer Gene Ther 2002; 9(12): 1043–1055.PubMedCrossRefGoogle Scholar
  2. 2.
    Rickinson AB, Moss DJ. Human cytotoxic T-lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 1997; 15:405–431.PubMedCrossRefGoogle Scholar
  3. 3.
    Mescher MF. Molecular interactions in the activation of effector and precursor cytotoxic T-lymphocytes. Immunol Rev 1995; 146:177–210.PubMedCrossRefGoogle Scholar
  4. 4.
    Khanna R, Burrows SR, Moss DJ. Immune regulation in Epstein-Barr virus-associated diseases. Microbiol Rev 1995; 59(3):387–405.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Gandhi MK, Lambley E, Duraiswamy J et al. Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood 2006; 108(7):2280–2289.PubMedCrossRefGoogle Scholar
  6. 6.
    Hopwood P, Crawford DH. The role of EBV in posttransplant malignancies: a review. J Clin Pathol 2000; 53(4):248–254.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Khanna R, Tellam J, Duraiswamy J et al. Immunotherapeutic strategies for EBV-associated malignancies. Trends Mol Med 2001; 7(6):270–276.PubMedCrossRefGoogle Scholar
  8. 8.
    Li HP, Chang YS. Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci 2003; 10(5):490–504.PubMedCrossRefGoogle Scholar
  9. 9.
    Thorley-Lawson DA. Epstein-Barr virus: exploitingthe immune system. Nat Rev Immunol 2001; 1(1):75–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Smith C, Wakisaka N, Crough T et al. Discerning regulation of cis- and trans-presentation of CD8+ T-cell epitopes by EBV-encoded oncogene LMP-1 through self-aggregation. Blood 2009; 113(24):6148–6152.PubMedCrossRefGoogle Scholar
  11. 11.
    Yin Y, Manoury B, Fahraeus R. Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science 2003; 301(5638):1371–1374.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Tellam J, Fogg MH, Rist M et al. Influence of translation efficiency of homologous viral proteins on the endogenous presentation of CD8+ T-cell epitopes. J Exp Med 2007; 204(3):525–532.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Tellam J, Smith C, Rist M et al. Regulation of protein translation through mRNA structure influences MHC class I loading and T-cell recognition. Proc Natl Acad Sci USA 2008; 105(27):9319–9324.PubMedCrossRefGoogle Scholar
  14. 14.
    Blake N, Lee S, Redchenko I et al. Human CD8+ T-cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 1997; 7(6):791–802.PubMedCrossRefGoogle Scholar
  15. 15.
    Tellam J, Connolly G, Green KJ et al. Endogenous presentation of CD8+ T-cell epitopes from Epstein-Barr virus-encoded nuclear antigen 1. J Exp Med 2004; 199(10):1421–1431.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lee SP, Brooks JM, Al-Jarrah H et al. CD8 T-cell recognition of endogenously expressed epstein-barr virus nuclear antigen 1. J Exp Med 2004; 199(10): 1409–1420.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Voo KS, Fu T, Wang HY et al. Evidence for the presentation of major histocompatibility complex class I-restricted Epstein-Barr virus nuclear antigen 1 peptides to CD8+ T-lymphocytes. J Exp Med 2004; 199(4);459–470.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Comoli P, Pedrazzoli P, Maccario R et al. Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T-lymphocytes. J Clin Oncol 2005; 23(35):8942–8949.PubMedCrossRefGoogle Scholar
  19. 19.
    Straathof KC, Bollard CM, Popat U et al. Treatment of nasopharyngeal carcinoma with Epstein-Barr virus—specific T-lymphocytes. Blood 2005; 105(5):1898–1904.PubMedCrossRefGoogle Scholar
  20. 20.
    Chua D, Huang J, Zheng B et al. Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T-cells for nasopharyngeal carcinoma. Int J Cancer 2001; 94(1):73–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Louis CU, Straathof K, Bollard CM et al. Adoptive transfer of EB V-specific T-cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J Immunother 2010; 33(9):983–990.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Louis CU, Straathof K, Bollard CM et al. Enhancing the in vivo expansion of adoptively transferred EBV-specific CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients. Blood 2009; 113(11):2442–2450.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Secondino S, Zecca M, Licitra L et al. T-cell therapy for EBV-associated nasopharyngeal carcinoma: preparative lymphodepleting chemotherapy does not improve clinical results. Ann Oncol 2011.Google Scholar
  24. 24.
    Khanna R, Burrows SR, Nicholls J et al. Identification of cytotoxic T-cell epitopes within Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): evidence for HLA A2 supertype-restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T-lymphocytes. Eur J Immunol 1998;28(2):451–458.PubMedCrossRefGoogle Scholar
  25. 25.
    Redchenko IV, Rickinson AB. Accessing Epstein-Barr virus-specific T-cell memory with peptide-loaded dendritic cells. J Virol 1999; 73(1):334–342.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Lutzky VP, Davis JE, Crooks P et al. Optimization of LMP-specific CTL expansion for potential adoptive immunotherapy in NPC patients. Immunol Cell Biol 2009; 87(6):481–488.PubMedCrossRefGoogle Scholar
  27. 27.
    Duraiswamy J, Sherritt M, Thomson S et al. Therapeutic LMP1 polyepitope vaccine for EBV-associated Hodgkin disease and nasopharyngeal carcinoma. Blood 2003; 101(8):3150–3156.PubMedCrossRefGoogle Scholar
  28. 28.
    Smith C, Cooper L, Burgess M et al. Functional reversion of antigen-specific CD8+ T-cells from patients with Hodgkin lymphoma following in vitro stimulation with recombinant polyepitope. J Immunol 2006; 177(7):4897–4906.PubMedCrossRefGoogle Scholar
  29. 29.
    Gottschalk S, Heslop HE, Rooney CM. Adoptive immunotherapy for EBV-associated malignancies. Leuk Lymphoma 2005; 46(1): 1–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Gottschalk S, Edwards OL, Sili U et al. Generating CTLs against the subdominant Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood 2003; 101(5): 1905–1912.PubMedCrossRefGoogle Scholar
  31. 31.
    Wagner HJ, Sili U, Gahn B et al. Expansion of EBV latent membrane protein 2a specific cytotoxic T-cells for the adoptive immunotherapy of EBV latency type 2 malignancies: influence of recombinant IL12 and IL15. Cytotherapy 2003; 5(3):231–240.PubMedCrossRefGoogle Scholar
  32. 32.
    Bollard CM, Gottschalk S, Leen AM et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 2007; 110(8):2838–2845.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Taylor GS, Haigh TA, Gudgeon NH et al. Dual stimulation of Epstein-Barr Virus (EBV)-specific CD4+- and CD8+-T-cell responses by a chimeric antigen construct: potential therapeutic vaccine for EBV-positive nasopharyngeal carcinoma. J Virol 2004; 78(2):768–778.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lin CL, Lo WF, Lee TH et al. Immunization with Epstein-Barr Virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res 2002; 62(23):6952–6958.PubMedGoogle Scholar
  35. 35.
    Chia WK, Wang WW, Teo M et al. A phase II study evaluating the safety and efficacy of an adenovirus- LMP1–LMP2 transduced dendritic cell vaccine in patients with advanced metastatic nasopharyngeal carcinoma. Ann Oncol 2011.Google Scholar
  36. 36.
    Hui EP, Taylor GS, Ma B et al. A phase I trial of recombinant modified vaccinia ankara (MVA) vaccine encoding Epstein-Barr virus (EBV) antigens. Journal of Clinical Oncology 2011; 29:(suppl; abstr 2592)Google Scholar
  37. 37.
    Sengupta S, den Boon JA, Chen IH et al. Genome-Wide Expression Profiling Reveals EBV-Associated Inhibition of MHC Class I Expression in Nasopharyngeal Carcinoma. Cancer Res 2006; 66(16):7999–8006.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee SP, Chan AT, Cheung ST et al. CTL control of EBV in nasopharyngeal carcinoma (NPC): EBV-specific CTL responses in the blood and tumors of NPC patients and the antigen-processing function of the tumor cells. J Immunol 2000; 165(1):573–582.PubMedCrossRefGoogle Scholar
  39. 39.
    Khanna R, Busson P, Burrows SR et al. Molecular characterization of antigen-processing function in nasopharyngeal carcinoma (NPC): evidence for efficient presentation of Epstein-Barr virus cytotoxic T-cell epitopes by NPC cells. Cancer Res 1998; 58(2):310–314.PubMedGoogle Scholar
  40. 40.
    Lau KM, Cheng SH, Lo KW et al. Increase in circulating Foxp3+CD4+CD25(high) regulatory T-cells in nasopharyngeal carcinoma patients. Br J Cancer 2007; 96(4):617–622.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ko K, Yamazaki S, Nakamura K et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T-cells. J Exp Med 2005; 202(7):885–891.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gattinoni L, Finkelstein SE, Klebanoff CA et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T-cells. J Exp Med 2005; 202(7):907–912.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gattinoni L, Powell DJ, Jr., Rosenberg SA et al. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 2006; 6(5):383–393.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Muranski P, Boni A, Wrzesinski C et al. Increased intensity lymphodepletion and adoptive immunotherapy — how far can we go? Nat Clin Pract Oncol 2006; 3(12):668–681.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Klibi J, Niki T, Riedel A et al. Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood 2009; 113(9): 1957–1966.PubMedCrossRefGoogle Scholar
  46. 46.
    Ostrand-Rosenberg S. CD4+ T-lymphocytes: a critical component of antitumor immunity. Cancer Invest 2005; 23(5):413–419.PubMedGoogle Scholar
  47. 47.
    Khanna R, Burrows SR, Thomson SA et al. Class I processing-defective Burkitt’s lymphoma cells are recognized efficiently by CD4+ EBV-specific CTLs. J Immunol 1997; 158(8):3619–3625.PubMedGoogle Scholar
  48. 48.
    Haigh TA, Lin X, Hui EP et al. LMP1 and LMP2 Epitope-Specific CD4+ T-Cell Clones able to Recognise and Kill EBV Immortalised Lymphoblastoid Cell Lines (LCLs). The 12th Biennial Conference of the International Association for Research on the Epstein-Barr Virus and Associated Diseases. Boston/Cambridge, Massachusetts, USA. 2006.Google Scholar
  49. 49.
    Khanna R, Burrows SR, Steigerwald-Mullen PM et al. Isolation of cytotoxic T-lymphocytes from healthy seropositive individuals specific for peptide epitopes from Epstein-Barr virus nuclear antigen 1: implications for viral persistence and tumor surveillance. Virology 1995; 214(2):633–637.PubMedCrossRefGoogle Scholar
  50. 50.
    Tsang CW, Lin X, Gudgeon NH et al. CD4+ T-cell responses to Epstein-Barr virus nuclear antigen EBNA1 in Chinese populations are highly focused on novel C-terminal domain-derived epitopes. J Virol 2006; 80(16):8263–8266.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Leen A, Meij P, Redchenko I et al. Differential immunogenicity of Epstein-Barr virus latent-cycle proteins for human CD4(+) T-helper 1 responses. J Virol 2001; 75(18):8649–8659.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lin JC, Jan JS, Hsu CY et al. Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival. J Clin Oncol 2003; 21(4):631–637.PubMedCrossRefGoogle Scholar
  53. 53.
    Ma BB, Chan AT. Recent perspectives in the role of chemotherapy in the management of advanced nasopharyngeal carcinoma. Cancer 2005; 103(1):22–31.PubMedCrossRefGoogle Scholar
  54. 54.
    Seder RA, Ahmed R. Similarities and differences in CD4+ and CD8+ effector and memory T-cell generation. Nat Immunol 2003; 4(9):835–842.PubMedCrossRefGoogle Scholar
  55. 55.
    Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral infection. J Virol 2004; 78(11):5535–5545.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Klebanoff CA, Gattinoni L, Torabi-Parizi P et al. Central memory self/tumor-reactive CD8+ T-cells confer superior antitumor immunity compared with effector memory T-cells. Proc Natl Acad Sci USA 2005; 102(27):9571–9576.PubMedCrossRefGoogle Scholar
  57. 57.
    Klonowski KD, Marzo AL, Williams KJ et al. CD8 T-cell recall responses are regulated by the tissue tropism of the memory cell and pathogen. J Immunol 2006; 177(10):6738–6746.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Klonowski KD, Williams KJ, Marzo AL et al. Dynamics of blood-borne CD8 memory T-cell migration in vivo. Immunity 2004; 20(5):551–562.PubMedCrossRefGoogle Scholar
  59. 59.
    Gattinoni L, Klebanoff CA, Palmer DC et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T-cells. J Clin Invest 2005; 115(6):1616–1626.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wilkie GM, Taylor C, Jones MM et al. Establishment and characterization of a bank of cytotoxic T-lymphocytes for immunotherapy of epstein-barr virus-associated diseases. J Immunother 2004; 27(4):309–316.PubMedCrossRefGoogle Scholar
  61. 61.
    Haque T, Wilkie GM, Taylor C et al. Treatment of Epstein-Barr-virus-positive posttransplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T-cells. Lancet 2002; 360(9331):436–442.PubMedCrossRefGoogle Scholar
  62. 62.
    Wirth LJ, Fogg M, Wang F et al. Epstein-Barr virus (EBV)-specific immunotherapy in nasopharygneal carcinoma (NPC). Journal of Clinical Oncology. 2011; 29:(suppl; abstr 6025).Google Scholar
  63. 63.
    Smith C, Tsang, J, Beagley L et al. AdE 1 -LMP polyepitope-based adoptive immunotherapy for Epstein-Barr virus-associated recurrent or metastatic nasopharyngeal carcinoma. Cancer Res 2012 (in press).Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Corey Smith
    • 1
  • Rajiv Khanna
    • 1
  1. 1.Australian Centre for Vaccine Development, Tumour Immunology Laboratory, Division of Infectious Diseases and ImmunologyQueensland Institute of Medical ResearchBrisbaneAustralia

Personalised recommendations