Skip to main content

Hypoxic VDAC1: A Potential Mitochondrial Marker for Cancer Therapy

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 772))

Abstract

Finding new therapeutic targets to fight cancer is an ongoing quest. Because of insufficiencies in tumor vasculature, cells often are exposed to a hostile microenvironment that is low in oxygen (hypoxic) and nutrients. Thus, tumor cells face the challenge of finding new sources of energy and defying apoptosis, which allow them to survive, grow, and colonize other tissues. Eradicating specifically these hypoxic cells is one of the many goals of anticancer therapies. The mitochondrial voltage-dependent anion channel (VDAC) is a protein at the crossroads of metabolic and survival pathways. As its name suggests, VDAC is involved in ion transport as well as adenosine triphosphate and NAD+ transport. We recently reported the presence in tumor cells of a novel hypoxia-induced form of VDAC. This form, a C-terminal truncated protein (VDAC1-ΔC), was associated in some cancer cell lines with a high output of adenosine triphosphate and a strong resistance to chemotherapy-induced apoptosis. Furthermore, VDAC1-ΔC was detected in tissues of 50 % of 46 patients with lung cancer. This review examines the significance of this new form of VDAC1 for anticancer therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson SG, Karlberg O, Canback B, Kurland CG (2003) On the origin of mitochondria: a genomics perspective. Philos Trans R Soc Lond B Biol Sci 358:165–177, discussion 77–79

    Article  PubMed  CAS  Google Scholar 

  • Arbel N, Ben-Hail D, Shoshan-Barmatz V (2012) Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J biol chem 287:23152–23161

    Article  PubMed  CAS  Google Scholar 

  • Bathori G, Parolini I, Szabo I, Tombola F, Messina A, Oliva M et al (2000) Extramitochondrial porin: facts and hypotheses. J Bioenerg Biomembr 32:79–89

    Article  PubMed  CAS  Google Scholar 

  • Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J et al (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581

    Article  PubMed  CAS  Google Scholar 

  • Berridge MV, Herst PM, Lawen A (2009) Targeting mitochondrial permeability in cancer drug development. Mol Nutr Food Res 53:76–86

    Article  PubMed  CAS  Google Scholar 

  • Brahimi-Horn MC, Laferrière J, Mazure N, Pouysségur J (2007a) Hypoxia and tumour progression. In: Marmé D, Fusenig N (eds) Tumor angiogenesis. Springer, Berlin/New York, pp 171–194

    Google Scholar 

  • Brahimi-Horn MC, Chiche J, Pouyssegur J (2007b) Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19:223–229

    Article  PubMed  CAS  Google Scholar 

  • Brahimi-Horn MC, Ben-Hail D, Ilie M, Gounon P, Rouleau M, Hofman V et al (2012) Expression of a truncated active form of VDAC1 in lung cancer associates with hypoxic cell survival and correlates with progression to chemotherapy resistance. Cancer Res 72:2140–2150

    Article  PubMed  CAS  Google Scholar 

  • Brooks C, Dong Z (2007) Regulation of mitochondrial morphological dynamics during apoptosis by Bcl-2 family proteins: a key in Bak? Cell Cycle 6:3043–3047

    Article  PubMed  CAS  Google Scholar 

  • Chiche J, Rouleau M, Gounon P, Brahimi-Horn MC, Pouyssegur J, Mazure NM (2010) Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli. J Cell Physiol 222:648–657

    PubMed  CAS  Google Scholar 

  • De Pinto V, Messina A, Lane DJ, Lawen A (2010) Voltage-dependent anion-selective channel (VDAC) in the plasma membrane. FEBS lett 584:1793–1799

    Article  PubMed  Google Scholar 

  • Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434

    Article  PubMed  CAS  Google Scholar 

  • Fogg VC, Lanning NJ, Mackeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. Chin J Cancer 30:526–539

    Article  PubMed  CAS  Google Scholar 

  • Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Kepp O, Kroemer G (2012a) Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 13:780–788

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G (2012b) Mitochondrial control of cellular life, stress, and death. Circ Res 111:1198–1207

    Article  PubMed  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  PubMed  CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786

    Article  PubMed  CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2010) The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta 1797:1225–1230

    Article  PubMed  CAS  Google Scholar 

  • Palmer CS, Osellame LD, Stojanovski D, Ryan MT (2011) The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal 23:1534–1545

    Article  PubMed  CAS  Google Scholar 

  • Pedersen PL (2007) The cancer cell’s “power plants” as promising therapeutic targets: an overview. J Bioenerg Biomembr 39:1–12

    Article  PubMed  CAS  Google Scholar 

  • Pedersen PL (2008) Voltage dependent anion channels (VDACs): a brief introduction with a focus on the outer mitochondrial compartment’s roles together with hexokinase-2 in the “Warburg effect” in cancer. J Bioenerg Biomembr 40:123–126

    Article  PubMed  CAS  Google Scholar 

  • Penso J, Beitner R (1998) Clotrimazole and bifonazole detach hexokinase from mitochondria of melanoma cells. Eur J Pharmacol 342:113–117

    Article  PubMed  CAS  Google Scholar 

  • Rolland SG, Conradt B (2010) New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics. Curr Opin Cell Biol 22:852–858

    Article  PubMed  CAS  Google Scholar 

  • Schulze A, Harris AL (2012) How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491:364–373

    Article  PubMed  CAS  Google Scholar 

  • Shoshan-Barmatz V, Israelson A (2005) The voltage-dependent anion channel in endoplasmic/sarcoplasmic reticulum: characterization, modulation and possible function. J Membr Biol 204:57–66

    Article  PubMed  CAS  Google Scholar 

  • Shoshan-Barmatz V, Mizrachi D (2012) VDAC1: from structure to cancer therapy. Front Oncol 2:164

    Article  PubMed  Google Scholar 

  • Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31:227–285

    Article  PubMed  CAS  Google Scholar 

  • Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, Herzig S et al (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28:1589–1600

    Article  PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  PubMed  CAS  Google Scholar 

  • Warburg O (1928) The chemical constitution of respiration ferment. Science 68:437–443

    Article  PubMed  CAS  Google Scholar 

  • Wenner CE (2012) Targeting mitochondria as a therapeutic target in cancer. J Cell Physiol 227: 450–456

    Article  PubMed  CAS  Google Scholar 

  • Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337: 1062–1065

    Article  PubMed  CAS  Google Scholar 

  • Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2:67–71

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892–10903

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The laboratory is funded by the LigueNationaleContre le Cancer (équipelabellisée), the Association pour la Recherche contre le Cancer, the Institut National du Cancer, the AgenceNationale pour la Recherche, METOXIA (EU program FP7), the Centre A. Lacassagne, the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, and the University of Nice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Mazure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Brahimi-Horn, M.C., Mazure, N.M. (2014). Hypoxic VDAC1: A Potential Mitochondrial Marker for Cancer Therapy. In: Koumenis, C., Hammond, E., Giaccia, A. (eds) Tumor Microenvironment and Cellular Stress. Advances in Experimental Medicine and Biology, vol 772. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5915-6_5

Download citation

Publish with us

Policies and ethics