Hypoxia and Metabolism in Cancer

  • Karim BensaadEmail author
  • Adrian L. Harris
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 772)


Interest in targeting metabolism has been renewed in recent years as research increases understanding of the altered metabolic profile of tumor cells compared with that of normal cells. Metabolic reprogramming allows cancer cells to survive and proliferate in the hostile tumor microenvironment. These metabolic changes support energy generation, anabolic processes, and the maintenance of redox potential, mechanisms that are all essential for the proliferation and survival of tumor cells. The metabolic switch in a number of key metabolic pathways is mainly regulated by genetic events, rendering cancer cells addicted to certain nutrients, such as glutamine. In addition, hypoxia is induced when highly proliferative tumor cells distance themselves from an oxygen supply. Hypoxia-inducible factor 1α is largely responsible for alterations in metabolism that support the survival of hypoxic tumor cells. Metabolic alterations and dependencies of cancer cells may be exploited to improve anticancer therapy. This chapter reviews the main aspects of altered metabolism in cancer cells, emphasizing recent advances in glucose, glutamine, and lipid metabolism.


Cancer Hypoxia Metabolism Glycolysis Glutaminolysis Mitochondrial respiration Lipids Therapy Synthetic lethality 



The authors thank E. Favaro and A. McIntyre for their critical reading and feedback. K.B. is supported by a Cancer Research UK fellowship. A.L.H. is funded by Cancer Research UK, the Oxford Cancer Imaging Centre, the Breast Cancer Research Foundation, and the Oxford NIHR Biomedical Research Centre.


  1. Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT, Viola JP (2008) Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res 68(6):1732–1740, doi:68/6/1732 [pii]  10.1158/0008-5472.CAN-07-1999 PubMedGoogle Scholar
  2. Adam J, Hatipoglu E, O’Flaherty L, Ternette N, Sahgal N, Lockstone H, Baban D, Nye E, Stamp GW, Wolhuter K, Stevens M, Fischer R, Carmeliet P, Maxwell PH, Pugh CW, Frizzell N, Soga T, Kessler BM, El-Bahrawy M, Ratcliffe PJ, Pollard PJ (2011) Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20(4):524–537, doi:S1535-6108(11)00354-0 [pii]  10.1016/j.ccr.2011.09.006 PubMedGoogle Scholar
  3. Amary MF, Damato S, Halai D, Eskandarpour M, Berisha F, Bonar F, McCarthy S, Fantin VR, Straley KS, Lobo S, Aston W, Green CL, Gale RE, Tirabosco R, Futreal A, Campbell P, Presneau N, Flanagan AM (2011) Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 43(12):1262–1265, doi:ng.994 [pii]  10.1038/ng.994 PubMedGoogle Scholar
  4. Amith SR, Fliegel L (2013) Regulation of the Na+/H+Exchanger (NHE1) in breast cancer metastasis. Cancer Res 73(4):1259–1264, doi:0008-5472.CAN-12-4031 [pii]  10.1158/0008-5472.CAN-12-4031 PubMedGoogle Scholar
  5. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, Thomas CJ, Vander Heiden MG, Cantley LC (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334(6060):1278–1283, doi:science.1211485 [pii]  10.1126/science.1211485 PubMedGoogle Scholar
  6. Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A, Yang H, Mattaini KR, Metallo CM, Fiske BP, Courtney KD, Malstrom S, Khan TM, Kung C, Skoumbourdis AP, Veith H, Southall N, Walsh MJ, Brimacombe KR, Leister W, Lunt SY, Johnson ZR, Yen KE, Kunii K, Davidson SM, Christofk HR, Austin CP, Inglese J, Harris MH, Asara JM, Stephanopoulos G, Salituro FG, Jin S, Dang L, Auld DS, Park HW, Cantley LC, Thomas CJ, Vander Heiden MG (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8(10):839–847, doi:nchembio.1060 [pii]  10.1038/nchembio.1060 PubMedGoogle Scholar
  7. Azam F, Mehta S, Harris AL (2010) Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer 46(8):1323–1332, doi:S0959-8049(10)00147-4 [pii]  10.1016/j.ejca.2010.02.020 PubMedGoogle Scholar
  8. Bardos JI, Ashcroft M (2004) Hypoxia-inducible factor-1 and oncogenic signalling. Bioessays 26(3):262–269. doi: 10.1002/bies.20002 PubMedGoogle Scholar
  9. Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39(3):223–229. doi: 10.1007/s10863-007-9080-3 PubMedGoogle Scholar
  10. Bell EL, Emerling BM, Ricoult SJ, Guarente L (2011) SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30(26):2986–2996, doi:onc201137 [pii]  10.1038/onc.2011.37 PubMedGoogle Scholar
  11. Ben Sahra I, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P, Tanti JF, Le Marchand-Brustel Y, Bost F (2008) The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27(25):3576–3586, doi:1211024 [pii]  10.1038/sj.onc.1211024 PubMedGoogle Scholar
  12. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126(1):107–120, doi:S0092-8674(06)00762-8 [pii]  10.1016/j.cell.2006.05.036 PubMedGoogle Scholar
  13. Bensaad K, Cheung EC, Vousden KH (2009) Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J 28(19):3015–3026, doi:emboj2009242 [pii]  10.1038/emboj.2009.242 PubMedGoogle Scholar
  14. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8(12):967–975, doi:nrc2540 [pii]  10.1038/nrc2540 PubMedGoogle Scholar
  15. Bluemlein K, Gruning NM, Feichtinger RG, Lehrach H, Kofler B, Ralser M (2011) No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget 2(5):393–400, doi:278 [pii]PubMedGoogle Scholar
  16. Bobarykina AY, Minchenko DO, Opentanova IL, Moenner M, Caro J, Esumi H, Minchenko OH (2006) Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers. Acta Biochim Pol 53(4):789–799, doi:20061343 [pii]PubMedGoogle Scholar
  17. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11(1):37–51, doi:S1535-6108(06)00372-2 [pii]  10.1016/j.ccr.2006.10.020 PubMedGoogle Scholar
  18. Bozza PT, Viola JP (2010) Lipid droplets in inflammation and cancer. Prostaglandins Leukot Essent Fatty Acids 82(4–6):243–250, doi:S0952-3278(10)00049-9 [pii]  10.1016/j.plefa.2010.02.005 PubMedGoogle Scholar
  19. Bridges EM, Harris AL (2011) The angiogenic process as a therapeutic target in cancer. Biochem Pharmacol 81(10):1183–1191, doi:S0006-2952(11)00120-1 [pii]  10.1016/j.bcp.2011.02.0160PubMedGoogle Scholar
  20. Brookheart RT, Michel CI, Schaffer JE (2009) As a matter of fat. Cell Metab 10(1):9–12, doi:S1550-4131(09)00089-8 [pii]  10.1016/j.cmet.2009.03.011 PubMedGoogle Scholar
  21. Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, Viollet B, Thompson CB (2007) Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 67(14):6745–6752, doi:67/14/6745 [pii]  10.1158/0008-5472.CAN-06-4447 PubMedGoogle Scholar
  22. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95, doi:nrc2981 [pii]  10.1038/nrc2981 PubMedGoogle Scholar
  23. Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S, Vosseller K, Reginato MJ (2010) Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 29(19):2831–2842, doi:onc201041 [pii]  10.1038/onc.2010.41 PubMedGoogle Scholar
  24. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275(33):25130–25138. doi:10.1074/jbc.M001914200 M001914200 [pii]PubMedGoogle Scholar
  25. Chaneton B, Hillmann P, Zheng L, Martin AC, Maddocks OD, Chokkathukalam A, Coyle JE, Jankevics A, Holding FP, Vousden KH, Frezza C, O’Reilly M, Gottlieb E (2012) Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491(7424):458–462, doi:nature11540 [pii]  10.1038/nature11540 PubMedGoogle Scholar
  26. Chen L, Endler A, Shibasaki F (2009) Hypoxia and angiogenesis: regulation of hypoxia-inducible factors via novel binding factors. Exp Mol Med 41(12):849–857. doi: 10.3858/emm.2009.41.12.103 PubMedGoogle Scholar
  27. Chen H, Wang L, Beretov J, Hao J, Xiao W, Li Y (2010) Co-expression of CD147/EMMPRIN with monocarboxylate transporters and multiple drug resistance proteins is associated with epithelial ovarian cancer progression. Clin Exp Metastasis 27(8):557–569. doi:10.1007/s10585-010-9345-9PubMedGoogle Scholar
  28. Cheong JH, Park ES, Liang J, Dennison JB, Tsavachidou D, Nguyen-Charles C, Wa Cheng K, Hall H, Zhang D, Lu Y, Ravoori M, Kundra V, Ajani J, Lee JS, Ki Hong W, Mills GB (2011) Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin is effective against a broad spectrum of preclinical cancer models. Mol Cancer Ther 10(12):2350–2362, doi:1535-7163.MCT-11-0497 [pii]  10.1158/1535-7163.MCT-11-0497 PubMedGoogle Scholar
  29. Chiavarina B, Martinez-Outschoorn UE, Whitaker-Menezes D, Howell A, Tanowitz HB, Pestell RG, Sotgia F, Lisanti MP (2012) Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1alpha and HIF2alpha in tumor-associated fibroblasts and human breast cancer cells. Cell Cycle 11(17):3280–3289, doi:21643 [pii]  10.4161/cc.21643 PubMedGoogle Scholar
  30. Chiche J, Brahimi-Horn MC, Pouyssegur J (2010) Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 14(4):771–794, doi:JCMM994 [pii]  10.1111/j.1582-4934.2009.00994.x PubMedGoogle Scholar
  31. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008a) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233, doi:nature06734 [pii]  10.1038/nature06734 PubMedGoogle Scholar
  32. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008b) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452(7184):181–186, doi:nature06667 [pii]  10.1038/nature06667 PubMedGoogle Scholar
  33. Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J, Lane A, Trent JO, Chesney J (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 7(1):110–120, doi:7/1/110 [pii]  10.1158/1535-7163.MCT-07-0482 PubMedGoogle Scholar
  34. Dang CV (2012) Links between metabolism and cancer. Genes Dev 26(9):877–890, doi:26/9/877 [pii]  10.1101/gad.189365.112 PubMedGoogle Scholar
  35. Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8(1):51–56, doi:nrc2274 [pii]  10.1038/nrc2274 PubMedGoogle Scholar
  36. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744, doi:nature08617 [pii]  10.1038/nature08617 PubMedGoogle Scholar
  37. Daye D, Wellen KE (2012) Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 23(4):362–369, doi:S1084-9521(12)00034-1 [pii]  10.1016/j.semcdb.2012.02.002 PubMedGoogle Scholar
  38. DeBerardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29(3):313–324, doi:onc2009358 [pii]  10.1038/onc.2009.358 PubMedGoogle Scholar
  39. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350, doi:0709747104 [pii]  10.1073/pnas.0709747104 PubMedGoogle Scholar
  40. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20, doi:S1550-4131(07)00295-1 [pii]  10.1016/j.cmet.2007.10.002 PubMedGoogle Scholar
  41. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8(9):705–713. doi: 10.1038/nrc2468 PubMedGoogle Scholar
  42. Diers AR, Broniowska KA, Chang CF, Hogg N (2012) Pyruvate fuels mitochondrial respiration and proliferation of breast cancer cells: effect of monocarboxylate transporter inhibition. Biochem J 444(3):561–571, doi:BJ20120294 [pii]  10.1042/BJ20120294 PubMedGoogle Scholar
  43. Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, Garcia JA (2009) Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 324(5932):1289–1293, doi:324/5932/1289 [pii]  10.1126/science.1169956 PubMedGoogle Scholar
  44. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64(11):3892–3899,  10.1158/0008-5472.CAN-03-2904 64/11/3892 [pii]PubMedGoogle Scholar
  45. Engel M, Mazurek S, Eigenbrodt E, Welter C (2004) Phosphoglycerate mutase-derived polypeptide inhibits glycolytic flux and induces cell growth arrest in tumor cell lines. J Biol Chem 279(34):35803–35812, doi: 10.1074/jbc.M402768200 M402768200 [pii]PubMedGoogle Scholar
  46. Evans JM, Ogston SA, Emslie-Smith A, Morris AD (2006) Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulfonylureas and metformin. Diabetologia 49(5):930–936. doi: 10.1007/s00125-006-0176-9 PubMedGoogle Scholar
  47. Faleck DM, Ali K, Roat R, Graham MJ, Crooke RM, Battisti R, Garcia E, Ahima RS, Imai Y (2010) Adipose differentiation-related protein regulates lipids and insulin in pancreatic islets. Am J Physiol Endocrinol Metab 299(2):E249–E257, doi:ajpendo.00646.2009 [pii]  10.1152/ajpendo.00646.2009 PubMedGoogle Scholar
  48. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434, doi:S1535-6108(06)00145-0 [pii]  10.1016/j.ccr.2006.04.023 PubMedGoogle Scholar
  49. Farese RV Jr, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139(5):855–860, doi:S0092-8674(09)01417-2 [pii]  10.1016/j.cell.2009.11.005 PubMedGoogle Scholar
  50. Favaro E, Ramachandran A, McCormick R, Gee H, Blancher C, Crosby M, Devlin C, Blick C, Buffa F, Li JL, Vojnovic B, Piresdas Neves R, Glazer P, Iborra F, Ivan M, Ragoussis J, Harris AL (2010) MicroRNA-210 regulates mitochondrial free radical response to hypoxia and Krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS One 5(4):e10345. doi: 10.1371/journal.pone.0010345 PubMedGoogle Scholar
  51. Favaro E, Bensaad K, Chong MG, Tennant DA, Ferguson DJ, Snell C, Steers G, Turley H, Li JL, Gunther UL, Buffa FM, McIntyre A, Harris AL (2012) Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab. doi:S1550-4131(12)00451-2 [pii] 10.1016/j.cmet.2012.10.017PubMedGoogle Scholar
  52. Fico A, Paglialunga F, Cigliano L, Abrescia P, Verde P, Martini G, Iaccarino I, Filosa S (2004) Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis. Cell Death Differ 11(8):823–831. doi: 10.1038/sj.cdd.4401420, 4401420 [pii] PubMedGoogle Scholar
  53. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Lowenberg B, Licht JD, Godley LA, Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18(6):553–567, doi:S1535-6108(10)00483-6 [pii] 10.1016/j.ccr.2010.11.015Google Scholar
  54. Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501, doi:msb201135 [pii]  10.1038/msb.2011.35 PubMedGoogle Scholar
  55. Fritz V, Benfodda Z, Rodier G, Henriquet C, Iborra F, Avances C, Allory Y, de la Taille A, Culine S, Blancou H, Cristol JP, Michel F, Sardet C, Fajas L (2010) Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol Cancer Ther 9(6):1740–1754, doi:1535-7163.MCT-09-1064 [pii]  10.1158/1535-7163.MCT-09-1064 PubMedGoogle Scholar
  56. Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129(1):111–122, doi:S0092-8674(07)00307-8 [pii]  10.1016/j.cell.2007.01.047 PubMedGoogle Scholar
  57. Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, Mo YY, Hirota S, Hosobe S, Tsukada T, Miura K, Kamada S, Saito K, Iiizumi M, Liu W, Ericsson J, Watabe K (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 68(4):1003–1011, doi:68/4/1003 [pii]  10.1158/0008-5472.CAN-07-2489 PubMedGoogle Scholar
  58. Ganapathy-Kanniappan S, Vali M, Kunjithapatham R, Buijs M, Syed LH, Rao PP, Ota S, Kwak BK, Loffroy R, Geschwind JF (2010) 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy. Curr Pharm Biotechnol 11(5):510–517, doi:BSP/CPB/E-Pub/0078-11-5 [pii]PubMedGoogle Scholar
  59. Gao J, Serrero G (1999) Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J Biol Chem 274(24):16825–16830PubMedGoogle Scholar
  60. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765, doi:nature07823 [pii]  10.1038/nature07823 PubMedGoogle Scholar
  61. Gimm T, Wiese M, Teschemacher B, Deggerich A, Schodel J, Knaup KX, Hackenbeck T, Hellerbrand C, Amann K, Wiesener MS, Honing S, Eckardt KU, Warnecke C (2010) Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1. FASEB J 24(11):4443–4458, doi:fj.10-159806 [pii]  10.1096/fj.10-159806 PubMedGoogle Scholar
  62. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC (2007) HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11(4):335–347, doi:S1535-6108(07)00059-1 [pii]  10.1016/j.ccr.2007.02.006 PubMedGoogle Scholar
  63. Gordan JD, Lal P, Dondeti VR, Letrero R, Parekh KN, Oquendo CE, Greenberg RA, Flaherty KT, Rathmell WK, Keith B, Simon MC, Nathanson KL (2008) HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14(6):435–446, doi:S1535-6108(08)00366-8 [pii]  10.1016/j.ccr.2008.10.016 PubMedGoogle Scholar
  64. Gottlieb E, Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5(11):857–866, doi:nrc1737 [pii]  10.1038/nrc1737 PubMedGoogle Scholar
  65. Gu Y, Mi W, Ge Y, Liu H, Fan Q, Han C, Yang J, Han F, Lu X, Yu W (2010) GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res 70(15):6344–6351, doi:0008-5472.CAN-09-1887 [pii]  10.1158/0008-5472.CAN-09-1887 PubMedGoogle Scholar
  66. Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB (2012) Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal 16(11):1295–1322. doi: 10.1089/ars.2011.4414 PubMedGoogle Scholar
  67. Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91(5):807–819, doi:expphysiol.2006.033506 [pii]  10.1113/expphysiol.2006.033506 PubMedGoogle Scholar
  68. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1(6):401–408, doi:S1550-4131(05)00139-7 [pii]  10.1016/j.cmet.2005.05.001 PubMedGoogle Scholar
  69. Guzy RD, Mack MM, Schumacker PT (2007) Mitochondrial complex III is required for hypoxia-induced ROS production and gene transcription in yeast. Antioxid Redox Signal 9(9):1317–1328. doi: 10.1089/ars.2007.1708 PubMedGoogle Scholar
  70. Haigis MC, Yankner BA (2010) The aging stress response. Mol Cell 40(2):333–344, doi:S1097-2765(10)00778-1 [pii]  10.1016/j.molcel.2010.10.002 PubMedGoogle Scholar
  71. Halestrap AP, Wilson MC (2012) The monocarboxylate transporter family–role and regulation. IUBMB Life 64(2):109–119. doi: 10.1002/iub.572 PubMedGoogle Scholar
  72. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70, doi:S0092-8674(00)81683-9 [pii]PubMedGoogle Scholar
  73. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674, doi:S0092-8674(11)00127-9 [pii]  10.1016/j.cell.2011.02.013 PubMedGoogle Scholar
  74. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262, doi:nrm3311 [pii]  10.1038/nrm3311 PubMedGoogle Scholar
  75. Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47. doi: 10.1038/nrc704 PubMedGoogle Scholar
  76. Hess D, Chisholm JW, Igal RA (2010) Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One 5(6):e11394. doi: 10.1371/journal.pone.0011394 PubMedGoogle Scholar
  77. Hickey MM, Simon MC (2006) Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Curr Top Dev Biol 76:217–257, doi:S0070-2153(06)76007-0 [pii]  10.1016/S0070-2153(06)76007-0 PubMedGoogle Scholar
  78. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69(19):7507–7511, doi:0008-5472.CAN-09-2994 [pii]  10.1158/0008-5472.CAN-09-2994 PubMedGoogle Scholar
  79. Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A 107(16):7455–7460, doi:1001006107 [pii]  10.1073/pnas.1001006107 PubMedGoogle Scholar
  80. Izaki S, Goto H, Yokota S (2008) Increased chemosensitivity and elevated reactive oxygen species are mediated by glutathione reduction in glutamine deprived neuroblastoma cells. J Cancer Res Clin Oncol 134(7):761–768. doi: 10.1007/s00432-007-0338-2 PubMedGoogle Scholar
  81. Jensen KS, Binderup T, Jensen KT, Therkelsen I, Borup R, Nilsson E, Multhaupt H, Bouchard C, Quistorff B, Kjaer A, Landberg G, Staller P (2011) FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function. EMBO J 30(22):4554–4570, doi:emboj2011323 [pii]  10.1038/emboj.2011.323 PubMedGoogle Scholar
  82. Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13(3):310–316, doi:ncb2172 [pii]  10.1038/ncb2172 PubMedGoogle Scholar
  83. Kilburn DG, Lilly MD, Webb FC (1969) The energetics of mammalian cell growth. J Cell Sci 4(3):645–654PubMedGoogle Scholar
  84. Kim W, Liau LM (2012) IDH mutations in human glioma. Neurosurg Clin N Am 23(3):471–480, doi:S1042-3680(12)00048-4 [pii]  10.1016/ PubMedGoogle Scholar
  85. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006a) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185, doi:S1550-4131(06)00062-3 [pii]  10.1016/j.cmet.2006.02.002 PubMedGoogle Scholar
  86. Kim WY, Safran M, Buckley MR, Ebert BL, Glickman J, Bosenberg M, Regan M, Kaelin WG Jr (2006b) Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. EMBO J 25(19):4650–4662, doi:7601300 [pii]  10.1038/sj.emboj.7601300 PubMedGoogle Scholar
  87. Kletzien RF, Harris PK, Foellmi LA (1994) Glucose-6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J 8(2):174–181PubMedGoogle Scholar
  88. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324(1):269–275, doi:S0006-291X(04)02062-5 [pii]  10.1016/j.bbrc.2004.09.047 PubMedGoogle Scholar
  89. Kobayashi S, Millhorn DE (2001) Hypoxia regulates glutamate metabolism and membrane transport in rat PC12 cells. J Neurochem 76(6):1935–1948PubMedGoogle Scholar
  90. Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, Losman JA, Joensuu P, Bergmann U, Gross S, Travins J, Weiss S, Looper R, Ligon KL, Verhaak RG, Yan H, Kaelin WG Jr (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483(7390):484–488, doi:nature10898 [pii]  10.1038/nature10898 PubMedGoogle Scholar
  91. Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G, Martinez D, Carnero A, Beach D (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65(1):177–185, doi:65/1/177 [pii]PubMedGoogle Scholar
  92. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337, doi:nrc3038 [pii]  10.1038/nrc3038 PubMedGoogle Scholar
  93. Krishnan J, Suter M, Windak R, Krebs T, Felley A, Montessuit C, Tokarska-Schlattner M, Aasum E, Bogdanova A, Perriard E, Perriard JC, Larsen T, Pedrazzini T, Krek W (2009) Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 9(6):512–524, doi:S1550-4131(09)00139-9 [pii]  10.1016/j.cmet.2009.05.005 PubMedGoogle Scholar
  94. Kwon SJ, Lee YJ (2005) Effect of low glutamine/glucose on hypoxia-induced elevation of hypoxia-inducible factor-1alpha in human pancreatic cancer MiaPaCa-2 and human prostatic cancer DU-145 cells. Clin Cancer Res 11(13):4694–4700, doi:11/13/4694 [pii]  10.1158/1078-0432.CCR-04-2530 PubMedGoogle Scholar
  95. Laemmle A, Lechleiter A, Roh V, Schwarz C, Portmann S, Furer C, Keogh A, Tschan MP, Candinas D, Vorburger SA, Stroka D (2012) Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1alpha protein under hypoxic conditions. PLoS One 7(3):e33433, doi: 10.1371/journal.pone.0033433 PONE-D-12-00867 [pii]PubMedGoogle Scholar
  96. Laurenti G, Benedetti E, D’Angelo B, Cristiano L, Cinque B, Raysi S, Alecci M, Ceru MP, Cifone MG, Galzio R, Giordano A, Cimini A (2011) Hypoxia induces peroxisome proliferator-activated receptor alpha (PPARalpha) and lipid metabolism peroxisomal enzymes in human glioblastoma cells. J Cell Biochem 112(12):3891–3901. doi: 10.1002/jcb.23323 PubMedGoogle Scholar
  97. Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 107(5):2037–2042, doi:0914433107 [pii]  10.1073/pnas.0914433107 PubMedGoogle Scholar
  98. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ, Liebler DC, Slebos RJ, Lorkiewicz PK, Higashi RM, Fan TW, Dang CV (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1):110–121, doi:S1550-4131(11)00468-2 [pii]  10.1016/j.cmet.2011.12.009 PubMedGoogle Scholar
  99. Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330(6009):1340–1344, doi:330/6009/1340 [pii]  10.1126/science.1193494 PubMedGoogle Scholar
  100. Li J, Ding SF, Habib NA, Fermor BF, Wood CB, Gilmour RS (1994) Partial characterization of a cDNA for human stearoyl-CoA desaturase and changes in its mRNA expression in some normal and malignant tissues. Int J Cancer 57(3):348–352PubMedGoogle Scholar
  101. Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O’Donnell KA, Kim JW, Yustein JT, Lee LA, Dang CV (2005) Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 25(14):6225–6234, doi:25/14/6225 [pii]  10.1128/MCB.25.14.6225-6234.2005 PubMedGoogle Scholar
  102. Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 38(6):864–878, doi:S1097-2765(10)00385-0 [pii]  10.1016/j.molcel.2010.05.023 PubMedGoogle Scholar
  103. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 100(6):3077–3082, doi: 10.1073/pnas.0630588100 0630588100 [pii]PubMedGoogle Scholar
  104. Liu Y (2006) Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis 9(3):230–234, doi:4500879 [pii]  10.1038/sj.pcan.4500879 PubMedGoogle Scholar
  105. Liu K, Czaja MJ (2013) Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20(1):3–11, doi:cdd201263 [pii]  10.1038/cdd.2012.63 PubMedGoogle Scholar
  106. Locasale JW, Cantley LC (2011) Metabolic flux and the regulation of mammalian cell growth. Cell Metab 14(4):443–451, doi:S1550-4131(11)00345-7 [pii]  10.1016/j.cmet.2011.07.014 PubMedGoogle Scholar
  107. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G, Metallo CM, Muranen T, Sharfi H, Sasaki AT, Anastasiou D, Mullarky E, Vokes NI, Sasaki M, Beroukhim R, Stephanopoulos G, Ligon AH, Meyerson M, Richardson AL, Chin L, Wagner G, Asara JM, Brugge JS, Cantley LC, Vander Heiden MG (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43(9):869–874, doi:ng.890 [pii] 10.1038/ng.890Google Scholar
  108. Loo SY, Chang MK, Chua CS, Kumar AP, Pervaiz S, Clement MV (2012) NHE-1: a promising target for novel anti-cancer therapeutics. Curr Pharm Des 18(10):1372–1382, doi:CPD-EPUB-20120223-002 [pii]PubMedGoogle Scholar
  109. Losman JA, Looper R, Koivunen P, Lee S, Schneider RK, McMahon C, Cowley G, Root D, Ebert BL, Kaelin WG Jr (2013) (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. doi: doi:science.1231677 [pii] 10.1126/science.1231677 PubMedGoogle Scholar
  110. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O’Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478, doi:nature10860 [pii]  10.1038/nature10860 PubMedGoogle Scholar
  111. Luo W, Semenza GL (2011) Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget 2(7):551–556, doi:299 [pii]PubMedGoogle Scholar
  112. Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A, Semenza GL (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145(5):732–744, doi:S0092-8674(11)00436-3 [pii]  10.1016/j.cell.2011.03.054 PubMedGoogle Scholar
  113. Maddocks OD, Vousden KH (2011) Metabolic regulation by p53. J Mol Med (Berl) 89(3):237–245. doi: 10.1007/s00109-011-0735-5 Google Scholar
  114. Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E, Vousden KH (2013) Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493(7433):542–546, doi:nature11743 [pii]  10.1038/nature11743 PubMedGoogle Scholar
  115. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312(5780):1650–1653, doi:1126863 [pii]  10.1126/science.1126863 PubMedGoogle Scholar
  116. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7(10):763–777, doi:nrc2222 [pii]  10.1038/nrc2222 PubMedGoogle Scholar
  117. Mera P, Bentebibel A, Lopez-Vinas E, Cordente AG, Gurunathan C, Sebastian D, Vazquez I, Herrero L, Ariza X, Gomez-Puertas P, Asins G, Serra D, Garcia J, Hegardt FG (2009) C75 is converted to C75-CoA in the hypothalamus, where it inhibits carnitine palmitoyltransferase 1 and decreases food intake and body weight. Biochem Pharmacol 77(6):1084–1095, doi:S0006-2952(08)00855-1 [pii]  10.1016/j.bcp.2008.11.020 PubMedGoogle Scholar
  118. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384, doi:nature10602 [pii]  10.1038/nature10602 PubMedGoogle Scholar
  119. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, Maguire C, Gammer TL, Mackey JR, Fulton D, Abdulkarim B, McMurtry MS, Petruk KC (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2(31):31ra34, doi:2/31/31ra34 [pii]  10.1126/scitranslmed.3000677 PubMedGoogle Scholar
  120. Minamishima YA, Moslehi J, Padera RF, Bronson RT, Liao R, Kaelin WG Jr (2009) A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo. Mol Cell Biol 29(21):5729–5741, doi:MCB.00331-09 [pii]  10.1128/MCB.00331-09 PubMedGoogle Scholar
  121. Minchenko OH, Opentanova IL, Ogura T, Minchenko DO, Komisarenko SV, Caro J, Esumi H (2005) Expression and hypoxia-responsiveness of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 in mammary gland malignant cell lines. Acta Biochim Pol 52(4):881–888, doi:20051025 [pii]PubMedGoogle Scholar
  122. Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM (2009) c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene 28(27):2485–2491, doi:onc2009112 [pii]  10.1038/onc.2009.112 PubMedGoogle Scholar
  123. Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381):385–388, doi:nature10642 [pii]  10.1038/nature10642 PubMedGoogle Scholar
  124. Murdoch C, Muthana M, Lewis CE (2005) Hypoxia regulates macrophage functions in inflammation. J Immunol 175(10):6257–6263, doi:175/10/6257 [pii]PubMedGoogle Scholar
  125. Mylonis I, Sembongi H, Befani C, Liakos P, Siniossoglou S, Simos G (2012) Hypoxia causes triglyceride accumulation by HIF-1-mediated stimulation of lipin 1 expression. J Cell Sci 125(Pt 14):3485–3493, doi:jcs.106682 [pii]  10.1242/jcs.106682 PubMedGoogle Scholar
  126. Narravula S, Colgan SP (2001) Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol 166(12):7543–7548PubMedGoogle Scholar
  127. Nishiyama Y, Goda N, Kanai M, Niwa D, Osanai K, Yamamoto Y, Senoo-Matsuda N, Johnson RS, Miura S, Kabe Y, Suematsu M (2012) HIF-1alpha induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice. J Hepatol 56(2):441–447, doi:S0168-8278(11)00659-3 [pii]  10.1016/j.jhep.2011.07.024 PubMedGoogle Scholar
  128. Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140(1):49–61, doi:S0092-8674(09)01439-1 [pii]  10.1016/j.cell.2009.11.027 PubMedGoogle Scholar
  129. Obach M, Navarro-Sabate A, Caro J, Kong X, Duran J, Gomez M, Perales JC, Ventura F, Rosa JL, Bartrons R (2004) 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem 279(51):53562–53570, doi:M406096200 [pii]  10.1074/jbc.M406096200 PubMedGoogle Scholar
  130. Oktay Y, Dioum E, Matsuzaki S, Ding K, Yan LJ, Haller RG, Szweda LI, Garcia JA (2007) Hypoxia-inducible factor 2alpha regulates expression of the mitochondrial aconitase chaperone protein frataxin. J Biol Chem 282(16):11750–11756, doi:M611133200 [pii]  10.1074/jbc.M611133200 PubMedGoogle Scholar
  131. Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, Simon MC (2007) Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol 27(3):912–925, doi:MCB.01223-06 [pii]  10.1128/MCB.01223-06 PubMedGoogle Scholar
  132. Pandey PR, Liu W, Xing F, Fukuda K, Watabe K (2012) Anti-cancer drugs targeting fatty acid synthase (FAS). Recent Pat Anticancer Drug Discov 7(2):185–197, doi:PRA-EPUB-20120209-002 [pii]PubMedGoogle Scholar
  133. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3(3):187–197, doi:S1550-4131(06)00060-X [pii]  10.1016/j.cmet.2006.01.012 PubMedGoogle Scholar
  134. Patel SA, Simon MC (2008) Biology of hypoxia-inducible factor-2 alpha in development and disease. Cell Death Differ 15(4):628–634, doi:cdd200817 [pii]  10.1038/cdd.2008.17 PubMedGoogle Scholar
  135. Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25(34):4633–4646, doi:1209597 [pii]  10.1038/sj.onc.1209597 PubMedGoogle Scholar
  136. Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M (2010) Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta, doi:S0005-2728(10)00740-1 [pii]  10.1016/j.bbabio.2010.10.022
  137. Pinheiro C, Longatto-Filho A, Simoes K, Jacob CE, Bresciani CJ, Zilberstein B, Cecconello I, Alves VA, Schmitt F, Baltazar F (2009) The prognostic value of CD147/EMMPRIN is associated with monocarboxylate transporter 1 co-expression in gastric cancer. Eur J Cancer 45(13):2418–2424, doi:S0959-8049(09)00485-7 [pii]  10.1016/j.ejca.2009.06.018 PubMedGoogle Scholar
  138. Pinheiro C, Albergaria A, Paredes J, Sousa B, Dufloth R, Vieira D, Schmitt F, Baltazar F (2010) Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma. Histopathology 56(7):860–867, doi:HIS3560 [pii]  10.1111/j.1365-2559.2010.03560.x PubMedGoogle Scholar
  139. Pollari S, Kakonen SM, Edgren H, Wolf M, Kohonen P, Sara H, Guise T, Nees M, Kallioniemi O (2011) Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat 125(2):421–430. doi: 10.1007/s10549-010-0848-5 PubMedGoogle Scholar
  140. Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2:49. doi:10.3389/fphar.2011.00049 PubMedGoogle Scholar
  141. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476(7360):346–350, doi:nature10350 [pii]  10.1038/nature10350 PubMedGoogle Scholar
  142. Prabhakar NR, Kumar GK, Nanduri J (2010) Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS. Respir Physiol Neurobiol 174(3):230–234, doi:S1569-9048(10)00326-5 [pii]  10.1016/j.resp.2010.08.022 PubMedGoogle Scholar
  143. Puskas LG, Feher LZ, Vizler C, Ayaydin F, Raso E, Molnar E, Magyary I, Kanizsai I, Gyuris M, Madacsi R, Fabian G, Farkas K, Hegyi P, Baska F, Ozsvari B, Kitajka K (2010) Polyunsaturated fatty acids synergize with lipid droplet binding thalidomide analogs to induce oxidative stress in cancer cells. Lipids Health Dis 9:56, doi:1476-511X-9-56 [pii]  10.1186/1476-511X-9-56 PubMedGoogle Scholar
  144. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774, doi:nrc3106 [pii]  10.1038/nrc3106 PubMedGoogle Scholar
  145. Qing G, Skuli N, Mayes PA, Pawel B, Martinez D, Maris JM, Simon MC (2010) Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1alpha. Cancer Res 70(24):10351–10361, doi:0008-5472.CAN-10-0740 [pii]  10.1158/0008-5472.CAN-10-0740 PubMedGoogle Scholar
  146. Rademakers SE, Lok J, van der Kogel AJ, Bussink J, Kaanders JH (2011) Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1alpha, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer 11:167, doi:1471-2407-11-167 [pii]  10.1186/1471-2407-11-167 PubMedGoogle Scholar
  147. Rakheja D, Konoplev S, Medeiros LJ, Chen W (2012) IDH mutations in acute myeloid leukemia. Hum Pathol 43(10):1541–1551, doi:S0046-8177(12)00165-7 [pii]  10.1016/j.humpath.2012.05.003 PubMedGoogle Scholar
  148. Rankin EB, Rha J, Selak MA, Unger TL, Keith B, Liu Q, Haase VH (2009) Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol Cell Biol 29(16):4527–4538, doi:MCB.00200-09 [pii]  10.1128/MCB.00200-09 PubMedGoogle Scholar
  149. Rey S, Semenza GL (2010) Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 86(2):236–242, doi:cvq045 [pii]  10.1093/cvr/cvq045 PubMedGoogle Scholar
  150. Rios EJ, Fallon M, Wang J, Shimoda LA (2005) Chronic hypoxia elevates intracellular pH and activates Na+/H+ exchange in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 289(5):L867–L874, doi:00455.2004 [pii]  10.1152/ajplung.00455.2004 PubMedGoogle Scholar
  151. Robey RB, Hay N (2009) Is Akt the “Warburg kinase”?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 19(1):25–31, doi:S1044-579X(08)00105-3 [pii]  10.1016/j.semcancer.2008.11.010 PubMedGoogle Scholar
  152. Roy S, Ghosh S, Mallick P, Maity P (2008) Acivicin with glutaminase regulates proliferation and invasion of human MCF-7 and OAW-42 cells–an in vitro study. Indian J Exp Biol 46(1):22–26PubMedGoogle Scholar
  153. Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, Van Veldhoven PP, Waltregny D, Daniels VW, Machiels J, Vanderhoydonc F, Smans K, Waelkens E, Verhoeven G, Swinnen JV (2010) De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res 70(20):8117–8126, doi:0008-5472.CAN-09-3871 [pii]  10.1158/0008-5472.CAN-09-3871 PubMedGoogle Scholar
  154. Saarikoski ST, Rivera SP, Hankinson O (2002) Mitogen-inducible gene 6 (MIG-6), adipophilin and tuftelin are inducible by hypoxia. FEBS Lett 530(1–3):186–190, doi:S0014579302034750 [pii]PubMedGoogle Scholar
  155. Salem AF, Whitaker-Menezes D, Lin Z, Martinez-Outschoorn UE, Tanowitz HB, Al-Zoubi MS, Howell A, Pestell RG, Sotgia F, Lisanti MP (2012) Two-compartment tumor metabolism: autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells. Cell Cycle 11(13):2545–2556, doi:20920 [pii]  10.4161/cc.20920 PubMedGoogle Scholar
  156. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, Kaluarachchi K, Bornmann W, Duvvuri S, Taegtmeyer H, Andreeff M (2010) Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 120(1):142–156, doi:38942 [pii]  10.1172/JCI38942 PubMedGoogle Scholar
  157. Santos CR, Schulze A (2012) Lipid metabolism in cancer. FEBS J 279(15):2610–2623. doi: 10.1111/j.1742-4658.2012.08644.x PubMedGoogle Scholar
  158. Sasaki M, Knobbe CB, Munger JC, Lind EF, Brenner D, Brustle A, Harris IS, Holmes R, Wakeham A, Haight J, You-Ten A, Li WY, Schalm S, Su SM, Virtanen C, Reifenberger G, Ohashi PS, Barber DL, Figueroa ME, Melnick A, Zuniga-Pflucker JC, Mak TW (2012) IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488(7413):656–659, doi:nature11323 [pii]  10.1038/nature11323 PubMedGoogle Scholar
  159. Scaglia N, Caviglia JM, Igal RA (2005) High stearoyl-CoA desaturase protein and activity levels in simian virus 40 transformed-human lung fibroblasts. Biochim Biophys Acta 1687(1–3):141–151, doi:S1388-1981(04)00199-4 [pii]  10.1016/j.bbalip.2004.11.015 PubMedGoogle Scholar
  160. Scaglia N, Chisholm JW, Igal RA (2009) Inhibition of stearoylCoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK. PLoS One 4(8):e6812. doi: 10.1371/journal.pone.0006812 PubMedGoogle Scholar
  161. Schonfeld P, Wojtczak L (2008) Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 45(3):231–241, doi:S0891-5849(08)00250-5 [pii]  10.1016/j.freeradbiomed.2008.04.029 PubMedGoogle Scholar
  162. Schug TT, Li X (2011) Sirtuin 1 in lipid metabolism and obesity. Ann Med 43(3):198–211,  10.3109/07853890.2010.547211 PubMedGoogle Scholar
  163. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 64(7): 2627–2633PubMedGoogle Scholar
  164. Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F, Yan LJ, Marck BT, Matsumoto AM, Shelton JM, Richardson JA, Bennett MJ, Garcia JA (2003) Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice. Nat Genet 35(4):331–340, doi: 10.1038/ng1266ng1266 [pii]PubMedGoogle Scholar
  165. Sears R, Leone G, DeGregori J, Nevins JR (1999) Ras enhances Myc protein stability. Mol Cell 3(2):169–179, doi:S1097-2765(00)80308-1 [pii]PubMedGoogle Scholar
  166. Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, Tsukamoto T, Rojas CJ, Slusher BS, Rabinowitz JD, Dang CV, Riggins GJ (2010) Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 70(22):8981–8987, doi:0008-5472.CAN-10-1666 [pii]  10.1158/0008-5472.CAN-10-1666 PubMedGoogle Scholar
  167. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5):625–634, doi:onc2009441 [pii]  10.1038/onc.2009.441 PubMedGoogle Scholar
  168. Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33(4):207–214, doi:S0165-6147(12)00017-X [pii]  10.1016/ PubMedGoogle Scholar
  169. Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269(38):23757–23763PubMedGoogle Scholar
  170. Shen GM, Zhao YZ, Chen MT, Zhang FL, Liu XL, Wang Y, Liu CZ, Yu J, Zhang JW (2010) Hypoxia-inducible factor-1 (HIF-1) promotes LDL and VLDL uptake through inducing VLDLR under hypoxia. Biochem J 441(2):675–683, doi:BJ20111377 [pii]  10.1042/BJ20111377 Google Scholar
  171. Shi Y, Tomic J, Wen F, Shaha S, Bahlo A, Harrison R, Dennis JW, Williams R, Gross BJ, Walker S, Zuccolo J, Deans JP, Hart GW, Spaner DE (2010) Aberrant O-GlcNAcylation characterizes chronic lymphocytic leukemia. Leukemia 24(9):1588–1598, doi:leu2010152 [pii]  10.1038/leu.2010.152 PubMedGoogle Scholar
  172. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94(13):6658–6663PubMedGoogle Scholar
  173. Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL (2006) HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 291(5):L941–L949, doi:00528.2005 [pii]  10.1152/ajplung.00528.2005 PubMedGoogle Scholar
  174. Singh R, Cuervo AM (2012) Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012:282041. doi: 10.1155/2012/282041 PubMedGoogle Scholar
  175. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135, doi:nature07976 [pii]  10.1038/nature07976 PubMedGoogle Scholar
  176. Smeland TE, Nada M, Cuebas D, Schulz H (1992) NADPH-dependent beta-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms. Proc Natl Acad Sci U S A 89(15):6673–6677PubMedGoogle Scholar
  177. Soh H, Wasa M, Fukuzawa M (2007) Hypoxia upregulates amino acid transport in a human neuroblastoma cell line. J Pediatr Surg 42(4):608–612, doi:S0022-3468(06)00940-7 [pii]  10.1016/j.jpedsurg.2006.12.010 PubMedGoogle Scholar
  178. Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP (2012) Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol 7:423–467. doi: 10.1146/annurev-pathol-011811-120856 PubMedGoogle Scholar
  179. Stambolsky P, Weisz L, Shats I, Klein Y, Goldfinger N, Oren M, Rotter V (2006) Regulation of AIF expression by p53. Cell Death Differ 13(12):2140–2149, doi:4401965 [pii]  10.1038/sj.cdd.4401965 PubMedGoogle Scholar
  180. Su X, Abumrad NA (2009) Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab 20(2):72–77, doi:S1043-2760(09)00003-4 [pii]  10.1016/j.tem.2008.11.001 PubMedGoogle Scholar
  181. Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, Lokshin M, Hosokawa H, Nakayama T, Suzuki Y, Sugano S, Sato E, Nagao T, Yokote K, Tatsuno I, Prives C (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci U S A 107(16):7461–7466, doi:1002459107 [pii]  10.1073/pnas.1002459107 PubMedGoogle Scholar
  182. Swinnen JV, Brusselmans K, Verhoeven G (2006) Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9(4):358–365, doi: 10.1097/01.mco.0000232894.28674.30, 00075197-200607000-00005 [pii]PubMedGoogle Scholar
  183. Tamura K, Makino A, Hullin-Matsuda F, Kobayashi T, Furihata M, Chung S, Ashida S, Miki T, Fujioka T, Shuin T, Nakamura Y, Nakagawa H (2009) Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Cancer Res 69(20):8133–8140, doi:0008-5472.CAN-09-0775 [pii]  10.1158/0008-5472.CAN-09-0775 PubMedGoogle Scholar
  184. Tan EY, Yan M, Campo L, Han C, Takano E, Turley H, Candiloro I, Pezzella F, Gatter KC, Millar EK, O’Toole SA, McNeil CM, Crea P, Segara D, Sutherland RL, Harris AL, Fox SB (2009) The key hypoxia regulated gene CAIX is upregulated in basal-like breast tumours and is associated with resistance to chemotherapy. Br J Cancer 100(2):405–411, doi:6604844 [pii]  10.1038/sj.bjc.6604844 PubMedGoogle Scholar
  185. Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordonez A, Corral-Escariz M, Soro I, Lopez-Bernardo E, Perales-Clemente E, Martinez-Ruiz A, Enriquez JA, Aragones J, Cadenas S, Landazuri MO (2011) Induction of the mitochondrial NDUFA4L2 protein by HIF-1alpha decreases oxygen consumption by inhibiting complex I activity. Cell Metab 14(6):768–779, doi:S1550-4131(11)00394-9 [pii]  10.1016/j.cmet.2011.10.008 PubMedGoogle Scholar
  186. Tian WN, Braunstein LD, Apse K, Pang J, Rose M, Tian X, Stanton RC (1999) Importance of glucose-6-phosphate dehydrogenase activity in cell death. Am J Physiol 276(5 Pt 1):C1121–C1131PubMedGoogle Scholar
  187. Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem 281(14):9030–9037, doi:M511397200 [pii]  10.1074/jbc.M511397200 PubMedGoogle Scholar
  188. Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10(9):671–684, doi:nrd3504 [pii]  10.1038/nrd3504 PubMedGoogle Scholar
  189. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033, doi:324/5930/1029 [pii]  10.1126/science.1160809 PubMedGoogle Scholar
  190. Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329(5998):1492–1499, doi:329/5998/1492 [pii]  10.1126/science.1188015 PubMedGoogle Scholar
  191. Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9(10):691–700, doi:nrc2715 [pii]  10.1038/nrc2715 PubMedGoogle Scholar
  192. Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, Cerione RA (2010a) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18(3):207–219, doi:S1535-6108(10)00306-5 [pii]  10.1016/j.ccr.2010.08.009 PubMedGoogle Scholar
  193. Wang C, Rajput S, Watabe K, Liao DF, Cao D (2010b) Acetyl-CoA carboxylase-a as a novel target for cancer therapy. Front Biosci (Schol Ed) 2:515–526, doi:82 [pii]Google Scholar
  194. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314PubMedGoogle Scholar
  195. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3):225–234, doi:S1535-6108(10)00036-X [pii]  10.1016/j.ccr.2010.01.020 PubMedGoogle Scholar
  196. Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW, Rabinowitz JD, Coller HA, Thompson CB (2010) The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 24(24):2784–2799, doi:gad.1985910 [pii]  10.1101/gad.1985910 PubMedGoogle Scholar
  197. Whitmer JT, Idell-Wenger JA, Rovetto MJ, Neely JR (1978) Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem 253(12):4305–4309PubMedGoogle Scholar
  198. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433, doi:S0968-0004(10)00091-5 [pii]  10.1016/j.tibs.2010.05.003 PubMedGoogle Scholar
  199. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon SB, Thompson CB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105(48):18782–18787, doi:0810199105 [pii]  10.1073/pnas.0810199105 PubMedGoogle Scholar
  200. Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, DeMatteo RG, Simon MC, Thompson CB (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A 108(49):19611–19616, doi:1117773108 [pii]  10.1073/pnas.1117773108 PubMedGoogle Scholar
  201. Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60(24):7075–7083PubMedGoogle Scholar
  202. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30, doi:S1535-6108(10)00527-1 [pii]  10.1016/j.ccr.2010.12.014 PubMedGoogle Scholar
  203. Yalcin A, Telang S, Clem B, Chesney J (2009) Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp Mol Pathol 86(3):174–179, doi:S0014-4800(09)00008-2 [pii]  10.1016/j.yexmp.2009.01.003 PubMedGoogle Scholar
  204. Ye J, Mancuso A, Tong X, Ward PS, Fan J, Rabinowitz JD, Thompson CB (2012) Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc Natl Acad Sci U S A 109(18):6904–6909, doi:1204176109 [pii]  10.1073/pnas.1204176109 PubMedGoogle Scholar
  205. Yoshii Y, Furukawa T, Yoshii H, Mori T, Kiyono Y, Waki A, Kobayashi M, Tsujikawa T, Kudo T, Okazawa H, Yonekura Y, Fujibayashi Y (2009) Cytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl-CoA/acetate metabolism. Cancer Sci 100(5):821–827PubMedGoogle Scholar
  206. Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M (2006) Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 66(21):10269–10273, doi:0008-5472.CAN-06-1500 [pii]  10.1158/0008-5472.CAN-06-1500 PubMedGoogle Scholar
  207. Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J, Huang P, Sawyer SK, Fuerth B, Faubert B, Kalliomaki T, Elia A, Luo X, Nadeem V, Bungard D, Yalavarthi S, Growney JD, Wakeham A, Moolani Y, Silvester J, Ten AY, Bakker W, Tsuchihara K, Berger SL, Hill RP, Jones RG, Tsao M, Robinson MO, Thompson CB, Pan G, Mak TW (2011) Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 25(10):1041–1051, doi:25/10/1041 [pii]  10.1101/gad.1987211 PubMedGoogle Scholar
  208. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11(5):407–420, doi:S1535-6108(07)00115-8 [pii]  10.1016/j.ccr.2007.04.001 PubMedGoogle Scholar
  209. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903, doi:M800102200 [pii]  10.1074/jbc.M800102200 PubMedGoogle Scholar
  210. Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh BS, Sun LL, Tai BC, Nga ME, Bhakoo KK, Jayapal SR, Nichane M, Yu Q, Ahmed DA, Tan C, Sing WP, Tam J, Thirugananam A, Noghabi MS, Pang YH, Ang HS, Mitchell W, Robson P, Kaldis P, Soo RA, Swarup S, Lim EH, Lim B (2012) Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1–2):259–272, doi:S0092-8674(11)01444-9 [pii]  10.1016/j.cell.2011.11.050 PubMedGoogle Scholar
  211. Zhao F, Mancuso A, Bui TV, Tong X, Gruber JJ, Swider CR, Sanchez PV, Lum JJ, Sayed N, Melo JV, Perl AE, Carroll M, Tuttle SW, Thompson CB (2010) Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene 29(20):2962–2972, doi:onc201067 [pii]  10.1038/onc.2010.67 PubMedGoogle Scholar
  212. Zoula S, Rijken PF, Peters JP, Farion R, Van der Sanden BP, Van der Kogel AJ, Decorps M, Remy C (2003) Pimonidazole binding in C6 rat brain glioma: relation with lipid droplet detection. Br J Cancer 88(9):1439–1444, doi: 10.1038/sj.bjc.6600837 6600837 [pii]PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CRUK Hypoxia and Angiogenesis Group, The Weatherall Institute of Molecular MedicineUniversity of Oxford, John Radcliffe HospitalHeadington, OxfordUK
  2. 2.CRUK Growth Factor Group, The Weatherall Institute of Molecular MedicineUniversity of Oxford, John Radcliffe HospitalHeadington, OxfordUK

Personalised recommendations