Malliavin Calculus and Stochastic Analysis pp 115-138 | Cite as
Large Deviations for Hilbert-Space-Valued Wiener Processes: A Sequence Space Approach
Conference paper
First Online:
- 1 Citations
- 2k Downloads
Abstract
Ciesielski’s isomorphism between the space of α-Hölder continuous functions and the space of bounded sequences is used to give an alternative proof of the large deviation principle (LDP) for Wiener processes with values in Hilbert space.
Keywords
Large deviations Schilder’s theorem Hilbert space valued Wiener process Ciesielski’s isomorphismNotes
Acknowledgements
Nicolas Perkowski is supported by a Ph.D. scholarship of the Berlin Mathematical School.
References
- 1.Baldi, P., Roynette, B.: Some exact equivalents for the Brownian motion in Hölder norm. Probab. Theory Relat. Fields 93, 457–484 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Ben Arous, G., Gradinaru, M.: Hölder norms and the support theorem for diffusions. Ann. Inst. H. Poincaré 30, 415–436 (1994)MathSciNetzbMATHGoogle Scholar
- 3.Ben Arous, G., Ledoux, M.: Grandes déviations de Freidlin-Wentzell en norme Hölderienne. Séminaire de Probabilités 28, 293–299 (1994)MathSciNetGoogle Scholar
- 4.Ciesielski, Z.: On the isomorphisms of the spaces H α and m. Bull. Acad. Pol. Sci. 8, 217–222 (1960)Google Scholar
- 5.Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)zbMATHCrossRefGoogle Scholar
- 6.Dembo, A., Zeitouni, O.: Large Deviation Techniques and Applications. Springer, New York (1998)CrossRefGoogle Scholar
- 7.Eddahbi, M., Ouknine, Y.: Large deviations of diffusions on Besov-Orlicz spaces. Bull. Sci. Math. 121, 573–584 (1997)MathSciNetzbMATHGoogle Scholar
- 8.Eddahbi, M., N’zi, M., Ouknine, Y.: Grandes déviations des diffusions sue les espaces de Besov-Orlicz et application. Stoch. Stoch. Rep. 65, 299–315 (1999)MathSciNetzbMATHGoogle Scholar
- 9.Freidlin, M., Wentzell, A.: Random Perturbations of Dynamical Systems, 2nd edn. Springer, New York (1998)zbMATHCrossRefGoogle Scholar
- 10.Galves, A., Olivieri, E., Vares, M.: Metastability for a class of dynamical systems subject to small random perturbations. Ann. Probab. 15, 1288–1305 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Schilder, M.: Asymptotic formulas for Wiener integrals. Trans. Amer. Math. Soc. 125, 63–85 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2013