Advertisement

CD133 Expression Strongly Correlates with the Phenotype of Very Small Embryonic-/Epiblast-Like Stem Cells

  • Mariusz Z. RatajczakEmail author
  • Kasia Mierzejewska
  • Janina Ratajczak
  • Magda Kucia
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 777)

Abstract

CD133 antigen (prominin-1) is a useful cell surface marker of very small embryonic-like stem cells (VSELs). Antibodies against it, conjugated to paramagnetic beads or fluorochromes, are thus powerful biological tools for their isolation from human umbilical cord blood, mobilized peripheral blood, and bone marrow. VSELs are described with the following characteristics: (1) are slightly smaller than red blood cells; (2) display a distinct morphology, typified by a high nuclear/cytoplasmic ratio and an unorganized euchromatin; (3) become mobilized during stress situations into peripheral blood; (4) are enriched in the CD133+LinCD45 cell fraction in humans; and (5) express markers of pluripotent stem cells (e.g., Oct-4, Nanog, and stage-specific embryonic antigen-4). The most recent in vivo data from our and other laboratories demonstrated that human VSELs exhibit some characteristics of long-term repopulating hematopoietic stem cells and are at the top of the hierarchy in the mesenchymal lineage. However, still more labor is needed to characterize better at a molecular level these rare cells.

Keywords

CD133 Cell isolation Stem cells VSELs 

Notes

Acknowledgements

This work was supported by NIH Grant 2R01 DK074720, the EU Innovative Economy Operational Program POIG.01.01.02-00-109/09-01, and the Stella and Henry Hoenig Endowment to MZR.

References

  1. 1.
    D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981PubMedCrossRefGoogle Scholar
  2. 2.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  3. 3.
    Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S, Puppato E et al (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood 110:3438–3446PubMedCrossRefGoogle Scholar
  4. 4.
    Krause DS (2008) Bone marrow-derived cells and stem cells in lung repair. Proc Am Thorac Soc 5:323–327PubMedCrossRefGoogle Scholar
  5. 5.
    Vacanti MP, Roy A, Cortiella J, Bonassar L, Vacanti CA (2001) Identification and initial characterization of spore-like cells in adult mammals. J Cell Biochem 80:455–460PubMedCrossRefGoogle Scholar
  6. 6.
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRefGoogle Scholar
  7. 7.
    Orkin SH, Zon LI (2002) Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nature Immunol 3:323–328CrossRefGoogle Scholar
  8. 8.
    Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869PubMedCrossRefGoogle Scholar
  9. 9.
    Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782PubMedCrossRefGoogle Scholar
  10. 10.
    Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E et al (2007) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21:297–303PubMedCrossRefGoogle Scholar
  11. 11.
    Sovalat H, Scrofani M, Eidenschenk A, Pasquet S, Rimelen V, Henon P (2011) Identification and isolation from either adult human bone marrow or G-CSF-mobilized peripheral blood of CD34(+)/CD133(+)/CXCR4(+)/Lin(−)CD45(−) cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells. Exp Hematol 39:495–505PubMedGoogle Scholar
  12. 12.
    Bhartiya D, Shaikh A, Nagvenkar P, Kasiviswanathan S, Pethe P, Pawani H et al (2012) Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cells Dev 21:1–6PubMedCrossRefGoogle Scholar
  13. 13.
    McGuckin C, Jurga M, Ali H, Strbad M, Forraz N (2008) Culture of embryonic-like stem cells from human umbilical cord blood and onward differentiation to neural cells in vitro. Nature Prot 3:1046–1055CrossRefGoogle Scholar
  14. 14.
    Gordon MY, Levicar N, Pai M, Bachellier P, Dimarakis I, Al-Allaf F et al (2006) Characterization and clinical application of human CD34+ stem/progenitor cell populations mobilized into the blood by granulocyte colony-stimulating factor. Stem Cells 24:1822–1830PubMedCrossRefGoogle Scholar
  15. 15.
    Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135PubMedCrossRefGoogle Scholar
  16. 16.
    Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K (2002) Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115:2131–2138PubMedGoogle Scholar
  17. 17.
    Pesce M, Orlandi A, Iachininoto MG, Straino S, Torella AR, Rizzuti V et al (2003) Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 93:e51–e62PubMedCrossRefGoogle Scholar
  18. 18.
    Newsome PN, Johannessen I, Boyle S, Dalakas E, McAulay KA, Samuel K et al (2003) Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion. Gastroenterology 124:1891–1900PubMedCrossRefGoogle Scholar
  19. 19.
    Kim BO, Tian H, Prasongsukarn K, Wu J, Angoulvant D, Wnendt S et al (2005) Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation 112:I96–I104PubMedCrossRefGoogle Scholar
  20. 20.
    Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell 116:639–648PubMedCrossRefGoogle Scholar
  21. 21.
    Di Campli C, Piscaglia AC, Pierelli L, Rutella S, Bonanno G, Alison MR et al (2004) A human umbilical cord stem cell rescue therapy in a murine model of toxic liver injury. Digestive Liver Dis 36:603–613CrossRefGoogle Scholar
  22. 22.
    Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD (2002) Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297:1299PubMedCrossRefGoogle Scholar
  23. 23.
    Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668PubMedCrossRefGoogle Scholar
  24. 24.
    Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J et al (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nature Med 10:494–501PubMedCrossRefGoogle Scholar
  25. 25.
    Sohni A, Verfaillie CM (2011) Multipotent adult progenitor cells. Best Pract Res Clin Haematol 24:3–11PubMedCrossRefGoogle Scholar
  26. 26.
    Mikhail MA, M’Hamdi H, Welsh J, Levicar N, Marley SB, Nicholls JP et al (2008) High frequency of fetal cells within a primitive stem cell population in maternal blood. Hum Reprod 23:928–933PubMedCrossRefGoogle Scholar
  27. 27.
    Zuba-Surma EK, Klich I, Greco N, Laughlin MJ, Ratajczak J, Ratajczak MZ (2010) Optimization of isolation and further characterization of umbilical-cord-blood-derived very small embryonic/ epiblast-like stem cells (VSELs). Eur J Haematol 84:34–46PubMedCrossRefGoogle Scholar
  28. 28.
    Zuba-Surma EK, Ratajczak MZ (2010) Overview of very small embryonic-like stem cells (VSELs) and methodology of their identification and isolation by flow cytometric methods. In: J Paul Robinson (managing editor) et al. (ed) Current protocols in cytometry, Chapter 9:Unit9 29Google Scholar
  29. 29.
    Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Wan W, Ratajczak J, Wojakowski W et al (2008) Hunt for pluripotent stem cell – regenerative medicine search for almighty cell. J Autoimmun 30:151–162PubMedCrossRefGoogle Scholar
  30. 30.
    Ratajczak MZ, Shin DM, Liu R, Mierzejewska K, Ratajczak J, Kucia M et al (2012) Very small embryonic/epiblast-like stem cells (VSELs) and their potential role in aging and organ rejuvenation-an update and comparison to other primitive small stem cells isolated from adult tissues. Aging 4:235–246PubMedGoogle Scholar
  31. 31.
    Kucia M, Ratajczak J, Reca R, Janowska-Wieczorek A, Ratajczak MZ (2004) Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis 32:52–57PubMedCrossRefGoogle Scholar
  32. 32.
    Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J (2004) Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia 18:29–40PubMedCrossRefGoogle Scholar
  33. 33.
    Shin DM, Liu R, Klich I, Ratajczak J, Kucia M, Ratajczak MZ (2010) Molecular characterization of isolated from murine adult tissues very small embryonic/epiblast like stem cells (VSELs). Mol Cells 29:533–538PubMedCrossRefGoogle Scholar
  34. 34.
    Shin DM, Liu R, Klich I, Wu W, Ratajczak J, Kucia M et al (2010) Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia 24:1450–1461PubMedCrossRefGoogle Scholar
  35. 35.
    Shin DM, Liu R, Wu W, Waigel SJ, Zacharias W, Ratajczak MZ et al (2012) Global gene expression analysis of very small embryonic-like stem cells reveals that the Ezh2-dependent bivalent domain mechanism contributes to their pluripotent state. Stem Cells Dev 21:1639–1652PubMedCrossRefGoogle Scholar
  36. 36.
    Muller FJ, Goldmann J, Loser P, Loring JF (2010) A call to standardize teratoma assays used to define human pluripotent cell lines. Cell Stem Cell 6:412–414PubMedCrossRefGoogle Scholar
  37. 37.
    Smith KP, Luong MX, Stein GS (2009) Pluripotency: toward a gold standard for human ES and iPS cells. J Cell Physiol 220:21–29PubMedCrossRefGoogle Scholar
  38. 38.
    Shin DM, Zuba-Surma EK, Wu W, Ratajczak J, Wysoczynski M, Ratajczak MZ et al (2009) Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia 23:2042–2051PubMedCrossRefGoogle Scholar
  39. 39.
    Ratajczak J, Zuba-Surma E, Klich I, Liu R, Wysoczynski M, Greco N et al (2011) Hematopoietic differentiation of umbilical cord blood-derived very small embryonic/epiblast-like stem cells. Leukemia 25:1278–1285PubMedCrossRefGoogle Scholar
  40. 40.
    Ratajczak J, Wysoczynski M, Zuba-Surma E, Wan W, Kucia M, Yoder MC et al (2011) Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells. Exp Hematol 39:225–237PubMedCrossRefGoogle Scholar
  41. 41.
    Kucia M, Wysoczynski M, Ratajczak J, Ratajczak MZ (2008) Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell Tissue Res 331:125–134PubMedCrossRefGoogle Scholar
  42. 42.
    Lohle M, Hermann A, Glass H, Kempe A, Schwarz SC, Kim JB et al (2012) Differentiation efficiency of induced pluripotent stem cells depends on the number of reprogramming factors. Stem Cells 30:570–579PubMedCrossRefGoogle Scholar
  43. 43.
    Taichman RS, Wang Z, Shiozawa Y, Jung Y, Song J, Balduino A et al (2010) Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Dev 19:1557–1570PubMedCrossRefGoogle Scholar
  44. 44.
    Dawn B, Tiwari S, Kucia MJ, Zuba-Surma EK, Guo Y, Sanganalmath SK et al (2008) Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells 26:1646–1655PubMedCrossRefGoogle Scholar
  45. 45.
    Zuba-Surma EK, Guo Y, Taher H, Sanganalmath SK, Hunt G, Vincent RJ et al (2011) Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodelling after myocardial infarction. J Cell Mol Med 15:1319–1328PubMedCrossRefGoogle Scholar
  46. 46.
    Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Milewski K, Wallace-Bradley D et al (2010) Cardiomyocyte differentiation of bone marrow-derived Oct-4+CXCR4+SSEA-1+ very small embryonic-like stem cells. Int J Oncol 37:237–247PubMedGoogle Scholar
  47. 47.
    Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J et al (2009) Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 53:1–9PubMedCrossRefGoogle Scholar
  48. 48.
    Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M et al (2009) Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 40:1237–1244PubMedCrossRefGoogle Scholar
  49. 49.
    Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M et al (2006) Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20:18–28PubMedCrossRefGoogle Scholar
  50. 50.
    Gammill HS, Nelson JL (2010) Naturally acquired microchimerism. Int J Dev Biol 54:531–543PubMedCrossRefGoogle Scholar
  51. 51.
    Zuba-Surma EK, Kucia M, Abdel-Latif A, Dawn B, Hall B, Singh R et al (2008) Morphological characterization of very small embryonic-like stem cells (VSELs) by ImageStream system analysis. J Cell Mol Med 12:292–303PubMedCrossRefGoogle Scholar
  52. 52.
    Iskovich S, Goldenberg-Cohen N, Stein J, Yaniv I, Fabian I, Askenasy N (2012) Elutriated stem cells derived from the adult bone marrow differentiate into insulin-producing cells in vivo and reverse chemical diabetes. Stem Cells Dev 21:86–96PubMedCrossRefGoogle Scholar
  53. 53.
    Kassmer SH, Bruscia EM, Zhang PX, Krause DS (2012) Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells. Stem Cells 30:491–499PubMedCrossRefGoogle Scholar
  54. 54.
    Virant-Klun I, Skutella T (2010) Stem cells in aged mammalian ovaries. Aging 2:3–6PubMedGoogle Scholar
  55. 55.
    Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H et al (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA 107:8639–8643PubMedCrossRefGoogle Scholar
  56. 56.
    Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, Zaveri K et al (2011) Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev 20:1451–1464PubMedCrossRefGoogle Scholar
  57. 57.
    Bhartiya D, Kasiviswanathan S, Unni SK, Pethe P, Dhabalia JV, Patwardhan S et al (2010) Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. J Histochem Cytochem 58:1093–1106PubMedCrossRefGoogle Scholar
  58. 58.
    Wu JH, Wang HJ, Tan YZ, Li ZH (2012) Characterization of rat very small embryonic-like stem cells and cardiac repair after cell transplantation for myocardial infarction. Stem Cells Dev 21:1367–1379PubMedCrossRefGoogle Scholar
  59. 59.
    Liu Y, Gao L, Zuba-Surma EK, Peng X, Kucia M, Ratajczak MZ et al (2009) Identification of small Sca-1(+), Lin(−), CD45(−) multipotential cells in the neonatal murine retina. Exp Hematol 37:1096–1107PubMedCrossRefGoogle Scholar
  60. 60.
    Goldenberg-Cohen N, Avraham-Lubin BC, Sadikov T, Goldstein RS, Askenasy N (2012) Primitive stem cells derived from bone marrow express glial and neuronal markers and support revascularization in injured retina exposed to ischemic and mechanical damage. Stem Cells Dev 21:1488–1500PubMedCrossRefGoogle Scholar
  61. 61.
    Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H et al (2011) Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci USA 108:9875–9880PubMedCrossRefGoogle Scholar
  62. 62.
    McGuckin CP, Forraz N, Baradez MO, Navran S, Zhao J, Urban R et al (2005) Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 38:245–255PubMedCrossRefGoogle Scholar
  63. 63.
    Seo KW, Lee SR, Bhandari DR, Roh KH, Park SB, So AY et al (2009) OCT4A contributes to the stemness and multi-potency of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs). Biochem Biophy Res Commun 384:120–125CrossRefGoogle Scholar
  64. 64.
    Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R et al (2006) Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood 107:2162–2169PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mariusz Z. Ratajczak
    • 1
    • 2
    Email author
  • Kasia Mierzejewska
    • 2
  • Janina Ratajczak
    • 1
    • 2
  • Magda Kucia
    • 1
    • 2
  1. 1.Stem Cell Institute at James Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of Physiology Pomeranian Medical UniversitySzczecinPoland

Personalised recommendations