Optimization in Healthcare Delivery Modeling: Methods and Applications

  • Sakine Batun
  • Mehmet A. BegenEmail author
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 184)


Optimization methods have been applied to a wide variety of problems in healthcare ranging from operational level scheduling decisions to the design of national healthcare policies. In this chapter, we provide an overview of several practical optimization applications in the domain of healthcare operations management, including appointment scheduling, operating room scheduling, capacity planning, workforce scheduling, healthcare facility location, organ allocation and transplantation, disease screening, and vaccine design. We provide detailed examples to illustrate the use of different optimization techniques such as discrete convex analysis, stochastic programming, and approximate dynamic programming in these areas.


Master Problem Valid Inequality Appointment Time Appointment Schedule Decision Epoch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adan I, Bekkers J, Dellaert N, Vissers J, Yu X (2009) Patient mix optimisation and stochastic resource requirements: A case study in cardiothoracic surgery planning. Health Care Manag Sci 12(2):129–141CrossRefGoogle Scholar
  2. Adelman D (2004) A price-directed approach to stochastic inventory/routing. Oper Res 52(4):499–514CrossRefGoogle Scholar
  3. Akcali E, Côté MJ, Lin C (2006) A network flow approach to optimizing hospital bed capacity decisions. Health Care Manag Sci 9(4):391–404CrossRefGoogle Scholar
  4. Ayvaci MUS, Alagoz O, Burnside ES (2012) The effect of budgetary restrictions on breast cancer diagnostic decisions. Manuf Serv Oper Manag MSOM Fall 2012 14:600–617. doi: 10.1287/msom.1110.0371 CrossRefGoogle Scholar
  5. Azaiez MN, Al Sharif SS (2005) A 0–1 goal programming model for nurse scheduling. Comp Oper Res 32(3):491–507CrossRefGoogle Scholar
  6. Batun S, Denton BT, Huschka TR, Schaefer AJ (2011) Operating room pooling and parallel surgery processing under uncertainty. INFORMS J Comput 23(2):220–237CrossRefGoogle Scholar
  7. Beaulieu H, Ferland JA, Gendron B, Michelon P (2000) Dynamic bid prices in revenue management. Health Care Manag Sci 3(3):193–200CrossRefGoogle Scholar
  8. Begen MA (2010) Appointment scheduling with discrete random durations and applications. Ph.D. Thesis, University of British Columbia, Vancouver, BC, 2010.
  9. Begen MA (2011) Stochastic dynamic programming models and applications. In: Cochran JJ, Cox LA, Keskinocak P, Kharoufeh J, Smith JC (eds) Wiley Encyclopedia of operations research and management science.
  10. Begen MA, Queyranne M (2011) Appointment scheduling with discrete random durations. Math Oper Res 36(2):240–257CrossRefGoogle Scholar
  11. Begen MA, Levi R, Queyranne M (2012) A sampling-based approach to appointment scheduling. Oper Res 60(3):675–681CrossRefGoogle Scholar
  12. Beliën J, Demeulemeester E (2007) Building cyclic master surgery schedules with leveled resulting bed occupancy. Eur J Oper Res 176 (2): 1185–1204CrossRefGoogle Scholar
  13. Beliën J, Demeulemeester E (2008) A branch-and-price approach for integrating nurse and surgery scheduling. Eur J Oper Res 189(3):652–668CrossRefGoogle Scholar
  14. Ben Abdelaziz F, Masmoudi M (2012). A multiobjective stochastic program for hospital bed planning. J Oper Res Soc 63:530–538. doi: 10.1057/jors.2011.39 CrossRefGoogle Scholar
  15. Benders JF (1962). Partitioning procedures for solving mixed variables programming problems. Numer Math 4(1):238–252CrossRefGoogle Scholar
  16. Blake JT, Donald J (2002) Mount sinai hospital uses integer programming to allocate operating room time. Interfaces 32(2):63–73CrossRefGoogle Scholar
  17. Brunner JO, Bard JF, Kolisch R (2009) Flexible shift scheduling of physicians. Health Care Manag Sci 12(3):285–305CrossRefGoogle Scholar
  18. Burke EK, De Causmaecker P, Vanden Berghe G, Van Landeghem H (2004) The state of the art of nurse rostering. J Scheduling 7(6):441–499CrossRefGoogle Scholar
  19. Cardoen B, Demeulemeester E, Beliën J (2010) Operating room planning and scheduling: A literature review. Eur J Oper Res 201(3):921–932CrossRefGoogle Scholar
  20. Carter MW, Lapierre SD (2001) Scheduling emergency room physicians. Health Care Manag Sci 4(4):347–360CrossRefGoogle Scholar
  21. Cayirli T, Veral E (2003) Outpatient scheduling in health care: A review of literature. Prod Oper Manag 12(4):519–549CrossRefGoogle Scholar
  22. Cayirli T, Veral E, Rosen H (2006) Designing appointment scheduling systems for ambulatory care services. Health Care Manag Sci 9(1):47–58CrossRefGoogle Scholar
  23. Cheang B, Li H, Li A, Rodrigues B (2003) Nurse rostering problems - a bibliographic survey. Eur J Oper Res 151(3):447–460CrossRefGoogle Scholar
  24. Cohn A, Root S, Kymissis C, Esses J, Westmoreland N (2009) Scheduling medical residents at boston university school of medicine. Interfaces 39(1):186–195CrossRefGoogle Scholar
  25. de Farias DP, Van Roy B (2003) The linear programming approach to approximate dynamic programming. Oper Res 51(6):850–865CrossRefGoogle Scholar
  26. Demirci MC, Schaefer AJ, Romeijn HE, Roberts MS (2011) An exact method for balancing efficiency and equity in the liver allocation hierarchy. INFORMS J Comput 24:260–275. doi: 10.1287/ijoc.1110.0445 CrossRefGoogle Scholar
  27. Denton BT, Gupta D (2003) Sequential bounding approach for optimal appointment scheduling. IIE Trans 35(11):1003–1016CrossRefGoogle Scholar
  28. Denton BT, Viapiano J, Vogl A (2007) Optimization of surgery sequencing and scheduling decisions under uncertainty. Health Care Manag Sci 10(1):13–24CrossRefGoogle Scholar
  29. Denton BT, Miller AJ, Balasubramanian HJ, Huschka TR (2010) Optimal allocation of surgery blocks to operating rooms under uncertainty. Oper Res 58(4):802–816CrossRefGoogle Scholar
  30. Duncan IB, Noble BM (1979) The allocation of specialties to hospitals in a health district. J Oper Res Soc 30(11):953–964Google Scholar
  31. Erdelyi A, Topaloglu H (2010) Approximate dynamic programming for dynamic capacity allocation with multiple priority levels. IIE Trans 43(2):129–142CrossRefGoogle Scholar
  32. Erdogan SA, Denton BT (2011a) Surgery planning and scheduling. In: Cochran JJ, Cox LA, Keskinocak P, Kharoufeh J, Smith JC (eds) Wiley Encyclopedia of operations research and management science.
  33. Erdogan SA, Denton BT (2011b) Dynamic appointment scheduling of a stochastic server with uncertain demand. INFORMS J Comput doi: 10.1287/ijoc.1110.0482 Google Scholar
  34. Fei H, Meskens N, Chu C (2010) A planning and scheduling problem for an operating theatre using an open scheduling strategy. Comp Ind Eng 58(2):221–230CrossRefGoogle Scholar
  35. Gerchak Y, Gupta D, Henig M (1996) Reservation planning for elective surgery under uncertain demand for emergency surgery. Manag Sci 42(3):321–334CrossRefGoogle Scholar
  36. Gocgun Y, Bresnahan BW, Ghate A, Gunn ML (2011) A Markov decision process approach to multi-category patient scheduling in a diagnostic facility. Artif Intell Med 53(2):73–81CrossRefGoogle Scholar
  37. Green L (2004) Capacity planning and management in hospitals. In: Operations research and health care. Kluwer Academic, Boston pp 15–41 Scholar
  38. Green LV, Savin S, Wang B (2006) Managing patient service in a diagnostic medical facility. Oper Res 54(1):11–25CrossRefGoogle Scholar
  39. Guerriero F, Guido R (2011) Operational research in the management of the operating theatre: A survey. Health Care Manag Sci 14(1):89–114CrossRefGoogle Scholar
  40. Gupta D (2007) Surgical suites’ operations management. Prod Oper Manag 16(6):689–700CrossRefGoogle Scholar
  41. Gupta D, Denton BT (2008) Appointment scheduling in health care: Challenges and opportunities. IIE Trans 40(9):800–819CrossRefGoogle Scholar
  42. Gupta D, Wang L (2008) Revenue management for a primary-care clinic in the presence of patient choice. Oper Res 56(3):576–592CrossRefGoogle Scholar
  43. Gupta D, Wang W (2012) Patient appointments in ambulatory care. In: Hall R (ed) Handbook of healthcare system scheduling. International series in operations research & management science, vol 168. Springer Science, pp 65–104. Scholar
  44. Higle JL, Sen S (1991) Stochastic decomposition: An algorithm for two-stage linear programs with recourse. Math Oper Res 16(3):650–669CrossRefGoogle Scholar
  45. Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58(301):13–30CrossRefGoogle Scholar
  46. Ingolfsson A, Budge S, Erkut E (2008) Optimal ambulance location with random delays and travel times. Health Care Manag Sci 11(3):262–274CrossRefGoogle Scholar
  47. Jacobs DA, Silan MN, Clemson BA (1996) An analysis of alternative locations and service areas of american red cross blood facilities. Interfaces 26(3):40–50CrossRefGoogle Scholar
  48. Jebali A, Alouane ABH, Ladet P (2006) Operating rooms scheduling. Int J Prod Econ 99 (1/2):52–62CrossRefGoogle Scholar
  49. Jensen JL (1906) Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math 30(1):175–193CrossRefGoogle Scholar
  50. Kao EPC, Queyranne M (1985) Budgeting costs of nursing in a hospital. Manag Sci 31(5): 608–621CrossRefGoogle Scholar
  51. Kolisch R, Sickinger S (2008) Providing radiology health care services to stochastic demand of different customer classes. OR Spectrum 30(2):375–395CrossRefGoogle Scholar
  52. Kong N, Schaefer AJ, Hunsaker BK, Roberts MS (2010) Maximizing the efficiency of the u. s. liver allocation system through region design. Manag Sci 56(12):2111–2122CrossRefGoogle Scholar
  53. Kurt M, Roberts MS, Schaefer AJ, Unver MU (2011) Valuing prearranged paired kidney exchanges: A stochastic game approach. Working paperGoogle Scholar
  54. Lavieri MS, Puterman ML (2009) Optimizing nursing human resource planning in British Columbia. Health Care Manag Sci 12(2):119–128CrossRefGoogle Scholar
  55. Levi R, Roundy RO, Shmoys DB (2007) Provably near-optimal sampling-based policies for stochastic inventory control models. Math Oper Res 32(4):821–838CrossRefGoogle Scholar
  56. Li X, Beullens P, Jones D, Tamiz M (2009) An integrated queuing andmulti-objective bed allocationmodel with application to a hospital in China. J Oper Res Soc 60(3): 330–338CrossRefGoogle Scholar
  57. Maenhout B, Vanhoucke M (2010) Branching strategies in a branch-and-price approach for a multiple objective nurse scheduling problem. J Scheduling 13(1):77–93CrossRefGoogle Scholar
  58. Margot F (2002) Pruning by isomorphism in branch-and-cut. Math Program 94(1):71–90CrossRefGoogle Scholar
  59. Maxwell MS, Restrepo M, Henderson SG, Topaloglu H (2010) Approximate dynamic programming for ambulance redeployment. INFORMS J Comput 22(2):266–281CrossRefGoogle Scholar
  60. May JH, Spangler WE, Strum DP, Vargas LG (2011) The surgical scheduling problem: Current research and future opportunities. Prod Oper Manag 20(3):392–405CrossRefGoogle Scholar
  61. Min D, Yih Y (2010) An elective surgery scheduling problem considering patient priority. Comp Oper Res 37(6):1091–1099CrossRefGoogle Scholar
  62. Murota K (2003) Discrete convex analysis: Monographs on discrete mathematics and applications 10. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  63. Organ Procurement and Transplantation Network (OPTN) (2010) Kidney paired donation pilot program. Accessed 27 Apr 2012
  64. Organisation for Economic Co-operation and Development (OPTN) (2011) Oecd health data 2011 - frequently requested data. Accessed 30 Apr 2012
  65. Ostrowski J, Linderoth J, Rossi F, Smriglio S (2011) Orbital branching. Math Program 126(1):147–178CrossRefGoogle Scholar
  66. Özaltın OY, Prokopyev OA, Schaefer AJ, Roberts MS (2011) Optimizing the societal benefits of the annual influenza vaccine: A stochastic programming approach. Oper Res 59(5):1131–1143CrossRefGoogle Scholar
  67. Patrick J (2012) A markov decision model for determining optimal outpatient scheduling. Health Care Manag Sci 15(2):91–102CrossRefGoogle Scholar
  68. Patrick J, Begen MA (2011) Markov decision processes and its applications in healthcare. In: Yih Y (ed) Handbook of healthcare delivery systems. CRC, Boca RatonGoogle Scholar
  69. Patrick J, Puterman ML, Queyranne M (2008) Dynamic multipriority patient scheduling for a diagnostic resource. Oper Res 56(6):1507–1525CrossRefGoogle Scholar
  70. Punnakitikashem P, Rosenberger JM, Behan DB (2008) Stochastic programming for nurse assignment. Comput Optim Appl 40(3):321–349CrossRefGoogle Scholar
  71. Purnomo HW, Bard JF (2007) Cyclic preference scheduling for nurses using branch and price. Nav Res Logist 54(2):200–220CrossRefGoogle Scholar
  72. Robinson LW, Chen RR (2009) A comparison of traditional and open-access policies for appointment scheduling. Manuf Serv Oper Manag 12:330–346. doi: 10.1287/msom.1090.0270 Google Scholar
  73. Rousseau LM, Pesant G, Gendreau M (2002) A general approach to the physician rostering problem. Ann Oper Res 115(1–4):193–205CrossRefGoogle Scholar
  74. Ruszczyński A (1986) A regularized decomposition method for minimizing a sum of polyhedral functions. Math Program 35(3):309–333CrossRefGoogle Scholar
  75. Sandikci B, Best T, Eisenstein D, Meltzer D (2011) Managing limited inpatient bed capacity. Working paperGoogle Scholar
  76. Santibáñez P, Begen M, Atkins D (2007) Surgical block scheduling in a system of hospitals: An application to resource and wait list management in a BC health authority. Health Care Manag Sci 10(3):269–282CrossRefGoogle Scholar
  77. Schweitzer PJ, Seidmann A (1985) Generalized polynomial approximations in markovian decision processes. J Math Anal Appl 110(2):568–582CrossRefGoogle Scholar
  78. Segev DL, Gentry SE, Warren DS, Reeb B, Montgomery RA (2005) Kidney paired donation and optimizing the use of live donor organs. J Am Med Assoc 293(15): 1883–1890CrossRefGoogle Scholar
  79. Sherali HD, Smith JC (2001) Improving discrete model representations via symmetry considerations. Manag Sci 47(10):1396–1407CrossRefGoogle Scholar
  80. Sitompul D, Randhawa SU (1990) Nurse scheduling models: A state-of-the-art review. J Soc Health 2(1):62–72Google Scholar
  81. Smith-Daniels VL, Schweikhart SB, Smith-Daniels DE (1988) Capacity management in health care services: Review and future research directions. Decis Sci 19(4):889–919CrossRefGoogle Scholar
  82. Stummer C, Doerner K, Focke A, Heidenberger K (2004) Determining location and size of medical departments in a hospital network: A multiobjective decision support approach. Health Care Manag Sci 7(1):63–71CrossRefGoogle Scholar
  83. Testi A, Tanfani E, Torre G (2007) A three-phase approach for operating theatre schedules. Health Care Manag Sci 10(2):163–172CrossRefGoogle Scholar
  84. van Oostrum JM, Van Houdenhoven M, Hurink JL, Hans EW, Wullink G, Kazemier G (2008) A master surgical scheduling approach for cyclic scheduling in operating room departments. OR Spectrum 30(2):355–374CrossRefGoogle Scholar
  85. Van Slyke R, Wets RJ (1969) L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J Appl Math 17(4):638–663CrossRefGoogle Scholar
  86. Vassilacopoulos G (1985) Allocating doctors to shifts in an accident and emergency department. J Oper Res Soc 36(6):517–523Google Scholar
  87. Velásquez R, Melo MT (2006) A set packing approach for scheduling elective surgical procedures. In: Operations Research Proceedings, vol 2005. Springer, Germany pp 425–430.
  88. Wang PP (1993) Static and dynamic scheduling of customer arrivals to a single-server system. Nav Res Logist 40(3):345–360CrossRefGoogle Scholar
  89. Wang W, Gupta D (2011) Adaptive appointment systems with patient preferences. Manuf Serv Oper Manag 13(3):373–389CrossRefGoogle Scholar
  90. Weiss EN (1990) Models for determining estimated start times and case orderings in hospital operating rooms. IIE Trans 22(2):143–150CrossRefGoogle Scholar
  91. World Health Organization (WHO) (2012) 10 facts on ageing and the life course. Accessed 30 Apr 2012
  92. Zhang Y, Berman O, Marcotte P, Verter V (2010) A bilevel model for preventive healthcare facility network design with congestion. IIE Trans 42(12):865–880CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Richard Ivey School of BusinessUniversity of Western OntarioLondonCanada

Personalised recommendations