Advertisement

Perspectives for the Study of the Galapagos Islands: Complex Systems and Human–Environment Interactions

  • Stephen J. Walsh
  • Carlos F. Mena
Chapter
Part of the Social and Ecological Interactions in the Galapagos Islands book series (SESGI, volume 1)

Abstract

Complexity theory and complex adaptive systems offer a theoretical framework to examine dynamic and coupled natural–human systems within a policy-relevant context. We advocate an Island Biocomplexity perspective that encompasses the coevolution and adaptive resilience of island ecosystems with a new island ecology that incorporates human impacts in coupled natural–human systems. Agent-based models (ABMs), as implementation tools, are described as an approach to examine “what-if” scenarios of change of linked social–ecological systems that involve heterogeneous agents (i.e., individuals and households), a dynamic environment, and exogenous forces and endogenous factors that combine in complex ways to alter social, terrestrial, and marine subsystems in the Galapagos Islands. Despite the fact that most of the new ABM advances are still experimental with few practical applications and few are being used in policy making, these frameworks offer a new way to understand the local interactions and regional patterns within the Galapagos Islands.

Keywords

Invasive Species Aerial Photography Galapagos Island Household Livelihood Tourism Market 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arntz W, Fahrbach E (1996) El Niño: experimento climático de la naturaleza. Fondo de Cultura Económica, MexicoGoogle Scholar
  2. Asner GP, Martin RE, Carlson KM, Rascher U, Vitousek PM (2006) Vegetation–climate interactions among native and invasive species in Hawaiian rainforest. Ecosystems 9:1106–1117CrossRefGoogle Scholar
  3. Baggio R (2008) Symptoms of complexity in a tourism system. Tourism Anal 13(1):1–20CrossRefGoogle Scholar
  4. Bliemsrieder M (1998) El Fenomeno de El Niño en Galapagos. Informe Galápagos 1997–1998. Fundacion Natura–World Wildlife Fund, Quito, Ecuador, pp 48–50Google Scholar
  5. Brown DG, Duh JD (2004) Spatial simulation for translating between land use and land cover. Int J Geogr Inf Sci 18(1):35–60CrossRefGoogle Scholar
  6. Brown DG, Riolo R, Robinson DT, North M, Rand W (2005) Spatial process and data models: toward integration of agent-based models and GIS. J Geogr Syst 7(1):25–47CrossRefGoogle Scholar
  7. Cecchini A, Trunfio GA (2007) A multi-agent model for supporting tourism policy-making by market simulations. Int Conf Comput Sc 1:567–574Google Scholar
  8. Cilliers P (1998) Complexity and postmodernism. Routledge, New YorkGoogle Scholar
  9. Cruz E (1985) Efectos del Niño en la Isla Floreana. In: Robinson G, Del Pino E (eds) El Niño en las Islas Galápagos: Evento. Charles Darwin Foundation, Galapagos, Ecuador, pp 1982–1993Google Scholar
  10. Ellshoff ZE, Gardner DE, Wikler C, Smith CW (1995) Annotated bibliography of the genus Psidium, with emphasis on P. Cattleianum (strawberry guava) and P. Guajava (common guava), forest weeds in Hawaii. Technical report 95, Cooperative National Park Resources Study Unit, University of Hawaii at ManoaGoogle Scholar
  11. Epstein JM, Axtell R (1996) Growing artificial societies: social science from the bottom up. MIT Press, Cambridge, MAGoogle Scholar
  12. Evans TP, Kelley H (2004) Multi-scale analysis of a household level agent-based model of landcover change. Environ Manage 72(1–2):57–72Google Scholar
  13. Global Invasive Species Database (GISD) (2005) Psidium guajava. http://www.issg.org/database/species/ecology.asp?si=211&fr=1&sts=. Accessed June 2, 2012. Last modified 11 Apr 2006
  14. Gonzalez JA, Montes C, Rodríguez J, Tapia W (2008) Rethinking the Galapagos Islands as a complex social–ecological system: implications for conservation and management. Ecol Soc 13(2):13 (online)Google Scholar
  15. Grenier C (2007) Galápagos, conservación contra natura. Quito: Abya-Yala, Universidad Andina Simón Bolivar, IFEA, IRD, Coopération Française, pp 463Google Scholar
  16. Gutiérrez JR, Meserve PL (2003) El Niño effects on soil seed bank dynamics in north-central Chile. Oecologia 134(4):511–517Google Scholar
  17. Hamann O (1985) The El Niño influence on the Galapagos vegetation. In: Robinson G, Del Pino E (eds) El Niño en las Islas Galápagos: Evento. Charles Darwin Foundation, Galapagos, Ecuador, pp 1982–1993Google Scholar
  18. Holmgren M, Scheffer M, Ezcurra E, Gutierrez JR, Mohren GMJ (2001) El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol Evol 16(2):89–94CrossRefGoogle Scholar
  19. Huang H, Zhang L (2007) A study of the population dynamics of Spartina alterniflora at Jiuduanmsha Shoals, Shanghai. Chin Ecol Eng 29:164–172CrossRefGoogle Scholar
  20. Hunt ER Jr, Parker-Williams AE (2006) Detection of flowering leafy spurge with satellite multispectral imagery. Rangel Ecol Manage 59(5):494–499CrossRefGoogle Scholar
  21. Itow S (2003) Zonation pattern, succession process, and invasion by aliens in species-poor insular vegetation of the Galapagos Islands. Global Environ Res 7(1):39–58Google Scholar
  22. Jaksic FM (2001) Ecological effects of El Niño in terrestrial ecosystems of western South America. Ecography 24(3):241–250Google Scholar
  23. Johnson PA, Sieber RE (2011) An agent-based approach to providing tourism planning support. Environ Plann B 38:486–504CrossRefGoogle Scholar
  24. Joshi C, De Leeuw J, van Andel J, Skidmore AK, Lekhak HD, van Duren IC, Norbu N (2006) Indirect remote sensing of a cryptic forest understory invasive species. For Ecol Manage 225:245–256CrossRefGoogle Scholar
  25. Lawler JL, Aukema JE, Grant JB, Halpern BS, Kareiva P, Nelson CR, Ohleth K, Olden JD, Schlaepfer MA, Silliman BR, Zaradic P (2006) Conservation science: 20-year report card. Front Ecol Environ 4(9):473–480CrossRefGoogle Scholar
  26. Luong TT, Toro B (1985) Cambios en la vegetacion de las Islas Galapagos durante “El Niño” 1982–1983. In: Robinson G, Del Pino E (eds) El Niño en las Islas Galápagos: Evento. Charles Darwin Foundation, Galapagos, Ecuador, pp 1982–1993Google Scholar
  27. Malanson GP (1999) Considering complexity. Ann Assoc Am Geogr 89(4):746–753CrossRefGoogle Scholar
  28. Malanson GP, Zeng Y, Walsh SJ (2006) Complexity at advancing ecotones and frontiers. Environ Plann A 38:619–632CrossRefGoogle Scholar
  29. Manson SM (2001) Simplifying complexity: a review of complexity theory. GeoForum 32(3):405–414CrossRefGoogle Scholar
  30. Matthews KB, Subaald AR, Craw S (1999) Implementation of a spatial decision support system for rural land use planning: integrating geographic information systems and environmental models with search and optimization algorithms. Comput Electron Agric 23:9–26CrossRefGoogle Scholar
  31. Mauchamp A (1997) Threats from alien plant species in the Galapagos Islands. Conserv Biol 11(1):260–263CrossRefGoogle Scholar
  32. Mena CF, Walsh SJ, Frizzelle BG, Malanson GP (2011) Land use change of household farms in the Ecuadorian Amazon: design and implementation of an agent based model. Appl Geogr 31(1):210–222CrossRefGoogle Scholar
  33. Miao X, Gong P, Swope SM, Pu R, Carruthers RI, Anderson GL (2006) Estimation of yellow starthistle abundance through CASI-2 hyperspectral imagery using linear spectral mixture models. Remote Sens Environ 101(3):329–341CrossRefGoogle Scholar
  34. Michener WK, Baerwald TJ, Firth P, Palmer MA, Rosenberger JL, Sandlin EA, Zimmerman H (2002) Defining and unraveling biocomplexity. Bioscience 51(12):1018–1023CrossRefGoogle Scholar
  35. Miller BW, Breckheimer I, McCleary AL, Guzman-Ramirez L, Caplow SC, Walsh SJ (2010) Using stylized agent-based models for population–environment research: a case from the Galapagos Islands. Popul Environ 31(6):401–426CrossRefGoogle Scholar
  36. Parker DS, Manson SM, Janssen M, Hoffmann M, Deadman P (2003) Multi-agent systems for the simulation of land use and land cover change: a review. Ann Assoc Am Geogr 93(2):314–337CrossRefGoogle Scholar
  37. Pengra BW, Johnston CA, Loveland TR (2007) Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor. Remote Sens Environ 108:74–81CrossRefGoogle Scholar
  38. Pizzitutti F, Mena CF (2011) GalaSim: an Agent Based Model simulation for touristic flows in the Galapagos Islands. Unpublished report. Universidad San Francisco de Quito, EcuadorGoogle Scholar
  39. Plog SC (2001) Why destination areas rise and fall in popularity? Cornell Hotel Rest Q 42(3):13CrossRefGoogle Scholar
  40. Rindfuss RR, Entwisle B, Walsh SJ, An L, Badenoch N, Brown DG, Deadman P, Evans TP, Fox J, Geoghegan J, Gutmann M, Kelly M, Linderman M, Liu J, Malanson GP, Mena CF, Messina JP, Parker DC, Robinson D, Sawangdee Y, Verburg P, Zhong G (2008) Land use change: complexity and comparisons. J Land Use Sci 3(1):1–10CrossRefGoogle Scholar
  41. Robalino E, Goumaz L, Alvear L, Ciza A, Castañeda L, Martinez W, Patiño M, Lopez M (1985) Effectos del Niño 1982–1983 en el Hombre y sus actividades en la Isla Santa Cruz, Galápagos. In: Robinson G, Del Pino E (eds) El Niño en las Islas Galápagos: Evento. Charles Darwin Foundation, Galapagos, Ecuador, pp 1982–1993Google Scholar
  42. Stitt S, Root R, Brown K, Hager S, Mladinich C, Anderson GL, Dudek K, Bustos MR, Kokaly R (2006) Classification of leafy spurge with Earth observing-1 advanced land imager. Rangel Ecol Manage 59:507–511CrossRefGoogle Scholar
  43. Tesfatsion L (2003) Agent-based computational economics: modeling economies as complex adaptive systems. Inform Sci 149(4):262–268CrossRefGoogle Scholar
  44. Tye A (2006) Can we infer island introduction and naturalization rates from inventory data? Evidence from introduced plants in Galapagos. Biol Invasions 8:201–215CrossRefGoogle Scholar
  45. Tye A, Aldaz I (1999) Effects of the 1997–98 El Niño event on the vegetation of Galápagos. Not Galápagos 60:25–28Google Scholar
  46. Tye A, Soria MC, Gardener MR (2002) A strategy for Galápagos weeds. In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. IUCN SSC Invasive Species Specialist Group, IUCN, Gland, Switzerland and Cambridge, UKGoogle Scholar
  47. Underwood E, Ustin SL, DiPierto D (2003) Mapping non-native plants using hyperspectral imagery. Remote Sens Environ 86(2):150–161CrossRefGoogle Scholar
  48. Underwood EC, Ustin SL, Ramirez CM (2007) A comparison of spatial and spectral image resolution for mapping invasive plants in coastal California. Environ Manage 39:63–83CrossRefGoogle Scholar
  49. Vera JF, López F, Marchena M, Anton S (1997) Análisis territorial del turismo. Arial Geografía, BarcelonaGoogle Scholar
  50. Walsh SJ, McCleary AL, Mena CF, Shao Y, Tuttle JP, Gonzalez A, Atkinson R (2008) QuickBird and Hyperion data analysis of an invasive plant species in the Galapagos Islands of Ecuador: implications for control and land use management. Remote Sens Environ Spec Issue Earth Observ Biodivers Ecol 112:1927–1941Google Scholar
  51. Walsh SJ, Mena CF, Frizzelle BG, DeHart JL (2009) Stylized environments and ABMs: educational tools for examining the causes and consequences of land use/land cover change. GeoCarto Int 24(6):423–435CrossRefGoogle Scholar
  52. Walsh SJ, Malanson GP, Messina JP, Brown DG, Mena CF (2011) Biocomplexity. In: Millington A, Blumler M, Schickhoff U (eds) The SAGE handbook of biogeography. SAGE Publications, London, pp 469–487Google Scholar
  53. Watkins G, Oxford P (2008) Galapagos: both sides of the coin. Enfoque Ediciones, QuitoGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of Geography, Center for Galapagos Studies, Galapagos Science CenterUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.College of Biological and Environmental Sciences, Galapagos Science CenterUniversity of San FranciscoQuitoEcuador

Personalised recommendations