Advertisement

Bringing Optical Network Control to the User Facilities: Evolution of the User-Controlled LightPath Provisioning Paradigm

  • Sergi FiguerolaEmail author
  • Eduard Grasa
  • Joan A. García-Espín
  • Jordi Ferrer Riera
  • Victor Reijs
  • Eoin Kenny
  • Mathieu Lemay
  • Michel Savoie
  • Scott Campbell
  • Marco Ruffini
  • Donal O’Mahony
  • Alexander Willner
  • Bill St. Arnaud
Chapter
Part of the Optical Networks book series (OPNW, volume 15)

Abstract

During the last years, a trend has emerged at universities, large enterprises, government institutions, hospitals and public institutions towards acquiring and deploying their own dark-fibre or wavelength networks as opposed to purchasing bandwidth network services from the traditional operators. These institutions usually follow the condominium model to build and deploy their network. The parties get together in a joint effort to purchase the network equipment and deploy the dark fibre. Each institution gets a subset of the deployed fibre and part of the available ports, proportional to their initial investment. However, each institution manages their resources independently of the other organisations that share the physical substrate. Traditional control plane architectures cannot address the requirements of this type of networks, because they assume a single entity has administrative control of all the network elements in a physical domain.

At the same time, a new set of bandwidth-intensive applications are emerging. e-Science applications, Grid applications and high-definition digital media streaming produce such a big amount of data that often justifies dedicating a network to a single application. In order to efficiently manage the resources, these applications must be able to configure the network in the way it better suits their needs.

In response to these requirements, the user-controlled light paths (UCLP) concept, described in Sect. 2, allows a network to be partitioned in several independent management domains and exposes the network resources belonging to each partition as software objects or services under the control of different users. The UCLP results have evolved into Argia (Sect. 3), which is an effort towards creating a commercial product that can be deployed in production optical networks. UCLP and related works are the precursors of infrastructure as a service (IaaS) applied to networks and are changing the way network pieces are being acquired. For making the UCLP concept flexible to any kind of resources, the IaaS Framework (Sect. 4) addresses the need to have a unified framework using enterprise-grade tools and libraries in which new resources can quickly and easily be created. Finally, Sect. 5 introduces the multidomain provisioning systems and the Harmony implementation, an inter-domain broker solution for providing bandwidth-on-demand services over different administrative domains controlled by different local resource managers.

Keywords

Optical Network Network Resource Network Element Grid Application Advance Reservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berger L (ed) (2003) Generalized multi-protocol label switching (GMPLS) signaling functional description. IETF, RFC 3471, January 2003Google Scholar
  2. 2.
    Architecture for the automatic switched optical networks (ASON) (2001) ITU-T Recommendation G.8080, 2001Google Scholar
  3. 3.
    UNI 1.0 signaling specification OIF-UNI-01.0—user network interface (UNI) 1.0 signaling specification (2004) Optical internetworking forum. [Online] 2004 Available: www.oiforum.com
  4. 4.
    St. Arnaud B (2002) Customer owned networks. [Online] Available: http://www.lightreading.com/spc/document.asp?doc_id=20448&site=serviceprovidercircle
  5. 5.
    St. Arnaud B (2002) Frequently asked questions about customer owned dark fiber, condominium fiber, community and municipal fiber networks. [Online] Available: http://whitepapers.techrepublic.com.com/abstract.aspx?docid=12105
  6. 6.
    Beard TR, Ford GS, Spiwak LJ (2001) Why ADCo? Why now? An economic exploration into the future of industry structure for the “last mile” in local telecommunications markets. Phoenix Center Policy Paper No. 12. [Online] Available at SSRN: http://ssrn.com/abstract=503442 or doi: 10.2139/ssrn.503442. Nov 2001
  7. 7.
    Waldron D (2000) Canadian School Board investments in private fiber optic networks, a cost benefit analysis. [Online] Available: http://www.canarie.ca/conferences/advnet2000/presentations/waldron.pdf. Communications Magazine, IEEE, vol.49, no.8, pp. 101–109, Aug. 2011
  8. 8.
    Norton WB (2001) Internet service providers and peering. [Online] Available: http://www.ecse.rpi.edu/Homepages/shivkuma/teaching/sp2001/readings/nortonpeering.pdf
  9. 9.
    DeFanti T, de Laat C, Mambretti J, Neggers K, St. Arnaud B (2001) TransLight: a global scale lambda grid for e-science. Commun ACM 46(11):34–41 (Special Issue on Blueprint for the Future of High Performance Networking)Google Scholar
  10. 10.
    Foster I, Kesselman C (2001) The grid 2: blueprint for a new computing infrastructure. Morgan Kauffman, San FranciscoGoogle Scholar
  11. 11.
    Erl T (September 2005) Service oriented architecture: concepts, technology and design. ISBN: 0131858580Google Scholar
  12. 12.
    Wu J, Savoie M, Zhang H, Campbell S, Bochmann Gv, St. Arnaud B (2003) (September/October 2005) Customer-managed end-to-end light path provisioning. Int J Netw Manag, San Francisco, USA, 15(5):349–362Google Scholar
  13. 13.
    Sanchez A, Figuerola S, Junyent G, Kenny E, Reijs V, Ruffini M (2007) A user provisioining tool for EoMPLS services based on UCLPv1. In: TERENA networking conference, Denmark. [Online] Available: http://tnc2007.terena.org/programme/presentations/show.php?pres_id=97
  14. 14.
    Grasa E, Figuerola S, Recio J, López A, de Palol M, Ribes L, Díaz V, Sangüesa R, Junyent G, Savoie M (October 2006) Video transcoding in a Grid network with user controlled light paths. Future Gen Comput Syst 22(8):920–928CrossRefGoogle Scholar
  15. 15.
    Figuerola S, Ciulli N, de Leenheer M, Demchemko Y, Ziegler W, Binczewski A et al (2007) PHOSPHORUS: single-step on-demand services across multi-domain networks for e-Science. In: Wang J, Chang G-K, Itaya Y, Zech H (eds) Network architectures, management, and applications V. Proc SPIE, Denmark, 6784:67842XGoogle Scholar
  16. 16.
    Kesselman C, Foster I (1997) Globus: a metacomputing infrastructure toolkit. Int J Supercomput Appl 115–128Google Scholar
  17. 17.
    Zheng J, Mouftah HT (2001) Supporting advance reservations in wavelength-routed WDM networks. In: Tenth international conference on computer communications and networks, South CarolinaGoogle Scholar
  18. 18.
    Figueira S, Kaushik N, Naiksatam S, Chiappari SA, Bhatnagar N (2006) Advance reservation of light paths in optical-network based grids. In: Proceedings of ICST/IEEE gridnets, San JoseGoogle Scholar
  19. 19.
    Global Lambda Integrated Facility (2010) Retrieved March 2011, from http://www.glif.is/
  20. 20.
    Ruffini M, O’Mahony D, Doyle L (August 2010) Optical IP switching: a flow-based approach to distributed cross-layer provisioning. IEEE/OSA J Opt Commun Netw, San Jose (California) 2(8):609–624CrossRefGoogle Scholar
  21. 21.
    Ruffini M (2008) Optical IP switching. Ph.D. Thesis. Computer Science Department, University of Dublin, Trinity CollegeGoogle Scholar
  22. 22.
    Sánchez A, Figuerola S, Junyent G, Kenny E, Reijs V, Ruffini M (2007) A user provisioning tool for EoMPLS services based on UCLPv1.5. In: Proceedings of the TERENA networking conference, DenmarkGoogle Scholar
  23. 23.
    Mantychore project website (2010) [online]. Available: http://www.mantychore.eu/
  24. 24.
    AutoBAHN: GEANT2 Bandwidth on Demand (BoD) User and Application Survey (DJ.3.2.1) (2005) Available online: http://www.geant2.net/upload/pdf/GN2-05-086v11.pdf
  25. 25.
    Willner A, Barz C, Garcia JA, Ferrer J, Figuerola S, Martini P (2009) Work in progress: harmony—advance reservations in heterogeneous multi-domain environments. In: IFIP TC6 networking congress, AachenGoogle Scholar
  26. 26.
    Zervas G, Escalona E, Nejabati R, Simeonidou D, Carozo G, Ciulli N, Belter B, Binczewski A, Stroinski M, Tzanakaki A, Marikdis G (2010) Phosphorus Grid-enabled GMPLS control plane (G2MPLS): architectures, services, and interfaces. In: IEEE communications magazine, multi-domain optical network issues and challengesGoogle Scholar
  27. 27.
    G-Lambda (2006) Website online available, Vienna (Austria) at: http://www.g-lambda.net/
  28. 28.
    Wu J, Savoie M, Campbell S, Zhang H, St. Arnaud B (2006) Layer 1 virtual private network management by users. Commun Mag IEEE, Azores (Portugal), 44(12):86–93Google Scholar
  29. 29.
    Wu J, Zhang H, Campbell S, Savoie M, Bochmann GV, St Arnaud B (2005) A Grid oriented light path provisioning system. In: Global telecommunications conference workshops, Dallas, 2004. GlobeCom workshops 2004. IEEE, pp 395–399Google Scholar
  30. 30.
    Grasa E, Figuerola S, Forns A, Junyent G, Mambretti J (2009) Extending the argia software with a dynamic optical multicast service to support high performance digital media. Opt Switch Netw 6(2):120–128. Recent trends on optical network design and modeling—selected topics from ONDM 2008, Aachen (Germany)Google Scholar
  31. 31.
    Figuerola S, Lemay M (July 2009) Infrastructure services for optical networks [invited]. IEEE/OSA J Opt Commun Netw 1(2):A247–A257CrossRefGoogle Scholar
  32. 32.
    Dijkstra F, van der Ham J, Grosso P, de Laat C (2006) A path finding implementation for multi-layer networks. Future Gen Comput Syst 25(2):142–146CrossRefGoogle Scholar
  33. 33.
    Despins C, Labeau F, Labelle R, Ngoc TL, McNeil J, Leon-Garcia A, Cheriet A, Cherkaoui O, Lemieux Y, Lemay M, Thibeault C, Gagnon F (2011) Leveraging green communications for carbon emission reductions: techniques, test beds and emerging carbon footprint standards. Commun Mag IEEE 49(8):101–109Google Scholar
  34. 34.
    Available Dallas (Texas), online: http://ec.europa.eu/research/fp6/index_en.cfm
  35. 35.
    Travostino F, Keates R, Lavian T, Monga I, Schofield B (2005) Project DRAC: creating an applications-aware network. Nortel Tech JGoogle Scholar
  36. 36.
    Barz C, Bornhauser U, Martini P, Pilz M, de Waal C, Willner A (2008) ARGON: reservation in grid-enabled networks. In: Proceedings of the 1st DFN-forum on communications technologies, KaiserslautenGoogle Scholar
  37. 37.
    Campanella M, Krzywania R, Sevasti A, Thomas S-M (2008) Generic domain-centric bandwidth on demand service manager: deliverable GN2-08-129, Géant, August 2008. [Online]. Available: http://www.geant2.net/upload/pdf/GN2-08-129-DS3-3-4_Functional_Specification_and_Design_of_Generic_Domain-centric_BoD_Service_Manager.pdf
  38. 38.
    GÉANT2: DICE (dante-internet2-canarie-esnet) collaboration. [Online]. Available: http://www.geant2.net/server/show/conWebDoc.1308
  39. 39.
    Takefusa A, Hayahsi M, Nagatsu N, Nakada H, Kudoh T, Miyamoto T, Otani T, Tanaka H, Suzuki M, Sameshima Y et al (2006) G-Lambda: coordination of a Grid scheduler and lambda path services over GMPLS. Future Gen Comput Syst 22:868–875Google Scholar
  40. 40.
    Battestilli L, Hutanu A, Karmous-Edwards G, Katz D, MacLaren J, Mambretti J, Moore J, Park S, Perros H, Sundar S, et al (2007) EnLIGHTened computing: an architecture for co-allocating network, compute, and other grid resources for high-end applications. In: Grid computing, high-performance and distributed applications (GADA’07), AlgarveGoogle Scholar
  41. 41.
    Lehman T, Sobieski J, Jabbari B (2006) DRAGON: a framework for service provisioning in heterogeneous Grid networks. Commun Mag IEEE 44:84–90Google Scholar
  42. 42.
    Farrel A, Vasseur JP, Ash J (2006) A path computation element (PCE)-based architecture. IETF RFC 4655Google Scholar
  43. 43.
    Network Service Interface WG (NSI-WG). ogf.org (2010) Retrieved March 2011, Nortel Technical Journal, February 2005, from http://www.ogf.org/gf/group_info/view.php?group=nsi-wg
  44. 44.
    OASIS Web Service Resource Framework Technical Committee (2006) [Online], Kaiserslauten (Germany) Available: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
  45. 45.
    Moy J (1998) OSPF Version 2. Retrieved March 2011, from www.faqs.org/rfc/rfc2328.txt
  46. 46.
    Degilà J et al (2009) A survey of topologies and performance measures for large-scale networks. IEEE Commun Surv Tutorials 6:18–31CrossRefGoogle Scholar
  47. 47.
    Kamiyama N et al (2008) Network topology design using analytic hierarchy process. In: Comm.: Proceedings of the IEEE international conference on communications ICC, pp 2048–2054Google Scholar
  48. 48.
    Willner A, Ferrer Riera J, Garcia-Espin JA, Siguerola S, De Leenheer M, Develder C (2010) An analytical model of the service provisioning time within the harmony network service plane. In: IEEE Globecom 2010 workshop on management of emerging networks and services (IEEE MENS 2010), Miami, FL, December 2010, pp 514–519. ISBN: 978-1-4244-8863-6, Algarve (Portugal), doi: 10.1109/BLO-COMW.2010.5700373
  49. 49.
    Figuerola S, García-Espín JA, Ferrer Riera J, Willner A (2009) Performance analysis of harmony: an optical, multi-domain network resource broker. In: 11th international conference on transparent optical networks, 2009 (ICTON’09), Azores, June–July 2009, pp 1–5. doi: 10.1109/ICTON.2009.518032
  50. 50.
    Sobieski J, Volbrecht J, Chaniotakis E (2011) Automated GOLE pilot project overview. In: Optical communications and networking. Presented at the APAN conference, Hong Kong, March 2011Google Scholar
  51. 51.
    Chaniotakis E (2011) Fenius—interoperability framework for virtual circuit provisioning systems. Retrieved March, 2011, from http://code.google.com/p/fenius/
  52. 52.
    Automated GOLE Pilot Project. wiki.glif.is. (2010) Retrieved March 2011, from http://wiki.glif.is/index.php/Automated_GOLE_Pilot_Project
  53. 53.
    Figuerola S, García-Espín JA, Ferrer Riera J, Willner A (2009) Scalability analysis and evaluation of the multi-domain, optical network service plane in harmony. In: 35th European conference on optical communication (ECOC ’09), Vienna, September 2009, pp 1–2, 20–24Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sergi Figuerola
    • 1
    Email author
  • Eduard Grasa
    • 1
  • Joan A. García-Espín
    • 1
  • Jordi Ferrer Riera
    • 1
  • Victor Reijs
    • 2
  • Eoin Kenny
    • 2
  • Mathieu Lemay
    • 3
  • Michel Savoie
    • 4
  • Scott Campbell
    • 4
  • Marco Ruffini
    • 5
  • Donal O’Mahony
    • 5
  • Alexander Willner
    • 6
  • Bill St. Arnaud
    • 7
  1. 1.Fundació i2CATBarcelonaSpain
  2. 2.HEAnet Limited, Ireland’s Education and Research NetworkDublinIreland
  3. 3.Inocybe Technologies Inc.OttawaCanada
  4. 4.Communications Research CentreBroadband Applications and Optical NetworksOttawaCanada
  5. 5.Department of Computer Science and StatisticsUniversity of Dublin, Trinity CollegeDublinIreland
  6. 6.Institute of Computer Science 4University of BonnBonnGermany
  7. 7.Independent Green IT ConsultantNew YorkUSA

Personalised recommendations