Resistance to Anthracyclines and Taxanes in Breast Cancer

  • Derek Edwardson
  • Simon Chewchuk
  • Amadeo M. Parissenti


Taxanes and anthracyclines are widely used in chemotherapy regimens for the treatment of invasive breast cancer. Whether used in the neoadjuvant or adjuvant settings, numerous clinical trials have validated their effectiveness in improving both progression-free and overall survival in breast cancer patients. However, while clinical response (decrease in tumor size by palpation) is common, for many patients this response is short-lived, after which tumors become refractory to treatment. In addition, some tumors exhibit innate (intrinsic) resistance to these regimens at the start of treatment. Consequently, the vast majority of patients do not exhibit either a pathologic complete response post-treatment or a survival benefit from chemotherapy. Numerous in vitro studies have identified potential mechanisms of action for the anthracyclines and taxanes and how tumors may evade the cytotoxic properties of these agents, but their clinical relevance remains questionable. In vivo studies of drug resistance are less subject to such criticisms, but false discovery rates can be high, in particular for genomic studies of biomarkers of drug response or resistance. Nevertheless, studies of drug response and resistance are now starting to provide useful tools to distinguish between responding and non-responding tumors and insight on how to best treat patients with tumors that are refractory to treatment.


Incidence rates Adjuvant therapy Estrogen Receptor (ER) positive cancers Taxanes Anthracyclines In vitro studies Drug transporters Aldo–keto reductase enzymes (AKRs) Microtubules β-tubulin isotypes Apoptosis Chemotherapy resistance Stromal cells Tumor initiating cells (TICs) Chloroquine 


  1. 1.
    Coleman M, Quaresma M, Berrino F, Lutz JM, De Angelis R, Capocaccia R, Baili P, Rachet B, Gatta G, Hakulinen T, Micheli A, Sant M, Weir H, Elwood M, Tsukuma H, Koifman A, Silva E, Francisci S, Santaquilani M, Verdecchia A, Storm H, Young J (2008) Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol 9:730–756PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson B, Yip CH, Smith R, Shyyan R, Sener S, Eniu A, Carlson R, Azavedo E, Harford J (2008) Guideline implementation for breast healthcare in low-income and middle-income countries: overview of the Breast Health Global Initiative Global Summit 2007. Cancer 113:2221–2243PubMedCrossRefGoogle Scholar
  3. 3.
    Carlson RW, Alred DC, Anderson BO, Burstein HJ, Edge SB, Farrar WB, Forero A, Giordano SH, Goldstein LJ, Gradishar WJ, Hayes DF, Hudis CA, Isakoff SJ, Ljung B-M, Mankoff DA, Marcom PK, Mayer IA, McComick B, Pierce LJ, Reed EC, Smith ML, Soliman H, Somlo G, Theriault RI, Ward JA, Wolff AC, Zellars R (2012) NCCN clinical practice guidelines in oncology. Breast Cancer, National Comprehensive Cancer Network, 1 March 2012Google Scholar
  4. 4.
    Martin M, Pienkowski T, Mackey J, Pawlicki M, Guastalla JP, Weaver C, Tomiak E, Al-Tweigeri TA, Chap L, Juhos E, Guevin R, Howell A, Fornander T, Hainsworth J, Coleman R, Vinholes J, Modiano M, Pinter T, Tang S, Colwell B, Prady C, Provencher L, Walde D, Rodriguez-Lescure A, Hugh J, Loret C, Rupin M, Blitz S, Jacobs P, Murawsky M, Riva A, Vogel C (2012) Adjuvant docetaxel for node-positive breast cancer. New Engl J Med 352:2302–2313CrossRefGoogle Scholar
  5. 5.
    Martin M, Segui MA, Anton A, Ruiz A, Ramos M, Adrover E, Aranda I, Rodriguez-Lescure A, Grosse R, Calvo L, Barnadas A, Isla D, Martinez del Prado P, Ruiz Borrego M, Zaluski J, Arcusa A, Munoz M, Lopez Vega MJ, Mel JR, Munarriz B, Llorca C, Jara C, Alba E, Florian J, Li J, Lopez Garcia-Asenjo JA, Saez A, Rios MJ, Almenar S, Peiro G, Lluch A (2010) Adjuvant docetaxel for high-risk, node-negative breast cancer. New Engl J Med 363:2200–2210PubMedCrossRefGoogle Scholar
  6. 6.
    Romond E, Perez E, Bryant J, Suman V, Geyer C, Davidson N, Tan-Chiu E, Martino S, Paik S, Kaufman P, Swain S, Pisansky T, Fehrenbacher L, Kutteh L, Vogel V, Visscher D, Yothers G, Jenkins R, Brown A, Dakhil S, Mamounas E, Lingle W, Klein P, Ingle J, Wolmark N (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. New Engl J Med 353:1673–1684PubMedCrossRefGoogle Scholar
  7. 7.
    Citron M, Berry D, Cirrincione C, Hudis C, Winer E, Gradishar W, Davidson N, Martino S, Livingston R, Ingle J, Perez E, Carpenter J, Hurd D, Holland J, Smith B, Sartor C, Leung E, Abrams J, Schilsky R, Muss H, Norton L (2003) Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 21:1431–1439PubMedCrossRefGoogle Scholar
  8. 8.
    Coombes RC, Bliss JM, Wils J, Morvan F, Espie M, Amadori D, Gambrosier P, Richards M, Aapro M, Villar-Grimalt A, McArdle C, Perez-Lopez FR, Vassilopoulos P, Ferreira EP, Chilvers CE, Coombes G, Woods EM, Marty M (1996) Adjuvant cyclophosphamide, methotrexate, and fluorouracil versus fluorouracil, epirubicin, and cyclophosphamide chemotherapy in premenopausal women with axillary node-positive operable breast cancer: results of a randomized trial. The International Collaborative Cancer Group. J Clin Oncol 14:35–45PubMedGoogle Scholar
  9. 9.
    Aisner J, Weinberg V, Perloff M, Weiss R, Perry M, Korzun A, Ginsberg S, Holland JF (1987) Chemotherapy versus chemoimmunotherapy (CAF v CAFVP v CMF each ± MER) for metastatic carcinoma of the breast: a CALGB study. Cancer and Leukemia Group B. J Clin Oncol 5:1523–1533PubMedGoogle Scholar
  10. 10.
    Martin M, Villar A, Sole-Calvo A, Gonzalez R, Massuti B, Lizon J, Camps C, Carrato A, Casado A, Candel MT, Albanell J, Aranda J, Munarriz B, Campbell J, az-Rubio E (2003) Doxorubicin in combination with fluorouracil and cyclophosphamide (i.v. FAC regimen, day 1, 21) versus methotrexate in combination with fluorouracil and cyclophosphamide (i.v. CMF regimen, day 1, 21) as adjuvant chemotherapy for operable breast cancer: a study by the GEICAM group. Ann Oncol 14:833–842PubMedCrossRefGoogle Scholar
  11. 11.
    Jones S, Savin M, Holmes FA, O’Shaughnessy J, Vukelja S, Blum J, McIntyre K, Pippen J, Bordelon J, Kirby R, Sandbach J, Hyman W, Khandelwal P, Negron A, Richards D, Anthony S, Mennel R, Boehm K, Meyer W, Asmar L (2006) Phase III trial comparing doxorubicin plus cyclophosphamide with docetaxel plus cyclophosphamide as adjuvant therapy for operable breast cancer. J Clin Oncol 24:5381–5387PubMedCrossRefGoogle Scholar
  12. 12.
    Paridaens R, Dirix L, Beex L, Nooij M, Cameron D, Cufer T, Piccart M, Bogaerts J, Therasse P (2008) Phase III study comparing exemestane with tamoxifen as first-line hormonal treatment of metastatic breast cancer in postmenopausal women: the European organisation for research and treatment of cancer breast cancer cooperative group. J Clin Oncol 26:4883–4890PubMedCrossRefGoogle Scholar
  13. 13.
    Jordan VC, Brodie AMH (2007) Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. Steroids 72:7–25PubMedCrossRefGoogle Scholar
  14. 14.
    Pommerenke E, Mattern J, Volm M (1994) Modulation of doxorubicin-toxicity by tamoxifen in multidrug-resistant tumor cells in vitro and in vivo. J Cancer Res Clin Oncol 120:422–426PubMedCrossRefGoogle Scholar
  15. 15.
    Hembruff S, Laberge M, Villeneuve D, Guo B, Veitch Z, Cecchetto M, Parissenti A (2008) Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance. BMC Cancer 8:318PubMedCrossRefGoogle Scholar
  16. 16.
    Veitch Z, Guo B, Hembruff S, Bewick A, Heibein A, Eng J, Cull S, Maclean D, Parissenti A (2009) Induction of 1C aldoketoreductases and other drug dose-dependent genes upon acquisition of anthracycline resistance. Pharmacogenet genom 19:477–488CrossRefGoogle Scholar
  17. 17.
    Weiss RB (1992) The anthracyclines: will we ever find a better doxorubicin? Sem Oncol 19:670–686Google Scholar
  18. 18.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229PubMedCrossRefGoogle Scholar
  19. 19.
    Shapiro AB, Ling V (1998) The mechanism of ATP-dependent multidrug transport by P-glycoprotein. Acta Physiol Scand Suppl 643:227–234PubMedGoogle Scholar
  20. 20.
    Ling V (1995) P-glycoprotein: its role in drug resistance. Am J Med 99:31S–34SGoogle Scholar
  21. 21.
    Leslie EM, Deeley RG, Cole SP (2001) Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology 167:3–23PubMedCrossRefGoogle Scholar
  22. 22.
    Sweatman TW, Israel M (1987) Comparative metabolism and elimination of adriamycin and 4′-epiadriamycin in the rat. Cancer Chemother Pharmacol 19:201–206PubMedCrossRefGoogle Scholar
  23. 23.
    Jin Y, Penning T (2007) Aldo–keto reductases and bioactivation/detoxication. Annu Rev Pharmacol Toxicol 47:263–292PubMedCrossRefGoogle Scholar
  24. 24.
    Jamieson D, Cresti N, Bray J, Sludden J, Griffin M, Hawsawi N, Famie E, Mould E, Verrill M, May F, Boddy A (2011) Two minor NQO1 and NQO2 alleles predict poor response of breast cancer patients to adjuvant doxorubicin and cyclophosphamide therapy. Pharmaogen Genom 21:808–819CrossRefGoogle Scholar
  25. 25.
    Wang J, Song Y, Xu S, Zhang Q, Li Y, Tang D, Jin S (2011) Down-regulation of ICBP90 contributes to doxorubicin resistance. Eur J Pharmacol 656:33–38PubMedCrossRefGoogle Scholar
  26. 26.
    Knappskog S, Lonning PE (2012) P53 and its molecular basis to chemoresistance in breast cancer. Expert Opin Ther Targets 16(1):S23–S30PubMedCrossRefGoogle Scholar
  27. 27.
    Parissenti A, Hembruff S, Villeneuve D, Veitch Z, Guo B, Eng J (2007) Gene expression profiles as biomarkers for the prediction of chemotherapy drug response in human tumour cells. Anticancer Drugs 18:499–523PubMedCrossRefGoogle Scholar
  28. 28.
    Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat (Rev Comment Antimicrob Anticancer Chemother) 4:303–313Google Scholar
  29. 29.
    Orr G, Verdier-Pinard P, McDaid H, Horwitz SB (2003) Mechanisms of Taxol resistance related to microtubules. Oncogene 22:7280–7295PubMedCrossRefGoogle Scholar
  30. 30.
    Sprowl J, Reed K, Armstrong S, Lanner C, Guo B, Kalatskaya I, Stein L, Hembruff S, Parissenti A (2012) Alterations in tumor necrosis factor signaling pathways are associated with cytotoxicity and resistance to taxanes: a study in isogenic resistant tumor cells. Breast Cancer Res 14:R2PubMedCrossRefGoogle Scholar
  31. 31.
    Ueda K, Cornwell MM, Gottesman MM, Pastan I, Roninson IB, Ling V, Riordan JR (1986) The mdr1 gene, responsible for multidrug-resistance, codes for P-glycoprotein. Biochem Biophys Res Commun 141:956–962PubMedCrossRefGoogle Scholar
  32. 32.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284PubMedCrossRefGoogle Scholar
  33. 33.
    Ise W, Heuser M, Sanders K, Beck J, Gekeler V (1996) P-glycoprotein-associated resistance to taxol and taxotere and its reversal by dexniguldipine-HCl, dexverapamil-HCl, or cyclosporin A. Int J Oncol 8:951–956PubMedGoogle Scholar
  34. 34.
    Guo B, Villeneuve D, Hembruff S, Kirwan A, Blais D, Bonin M, Parissenti A (2004) Cross-resistance studies of isogenic drug-resistant breast tumor cell lines support recent clinical evidence suggesting that sensitivity to paclitaxel may be strongly compromised by prior doxorubicin exposure. Breast cancer Res Tr 85:31–51CrossRefGoogle Scholar
  35. 35.
    Gianni L, Vigano L, Locatelli A, Capri G, Giani A, Tarenzi E, Bonadonna G (1997) Human pharmacokinetic characterization and in vitro study of the interaction between doxorubicin and paclitaxel in patients with breast cancer. J Clin Oncol 15:1906–1915PubMedGoogle Scholar
  36. 36.
    Paridaens R, Biganzoli L, Bruning P, Klijn JG, Gamucci T, Houston S, Coleman R, Schachter J, Van Vreckem A, Sylvester R, Awada A, Wildiers J, Piccart M (2000) Paclitaxel versus doxorubicin as first-line single-agent chemotherapy for metastatic breast cancer: a European organization for research and treatment of cancer randomized study with cross-over. J Clin Oncol 18:724–733PubMedGoogle Scholar
  37. 37.
    Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117PubMedCrossRefGoogle Scholar
  38. 38.
    Sullivan KF, Cleveland DW (1986) Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. PNAS 83:4327–4331PubMedCrossRefGoogle Scholar
  39. 39.
    MacRae TH(1997) Tubulin post-translational modifications–enzymes and their mechanisms of action. Eur J Biochem/FEBS 244:265–278Google Scholar
  40. 40.
    Curmi PA, Nogues C, Lachkar S, Carelle N, Gonthier MP, Sobel A, Lidereau R, Bieche I (2000) Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours. Brit J Cancer 82:142–150PubMedCrossRefGoogle Scholar
  41. 41.
    Derry WB, Wilson L, Khan IA, Luduena RF, Jordan MA (1997) Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified beta-tubulin isotypes. Biochemistry 36:3554–3562PubMedCrossRefGoogle Scholar
  42. 42.
    Verdier-Pinard P, Wang F, Martello L, Burd B, Orr G, Horwitz SB (2003) Analysis of tubulin isotypes and mutations from taxol-resistant cells by combined isoelectrofocusing and mass spectrometry. Biochemistry 42:5349–5357PubMedCrossRefGoogle Scholar
  43. 43.
    Burkhart CA, Kavallaris M, Band Horwitz S (2001) The role of beta-tubulin isotypes in resistance to antimitotic drugs. Biochimica et Biophysica Acta 1471:O1–O9Google Scholar
  44. 44.
    Shalli K, Brown I, Heys S, Schofield A (2005) Alterations of beta-tubulin isotypes in breast cancer cells resistant to docetaxel. FASEB J 19:1299–1301PubMedGoogle Scholar
  45. 45.
    Berrieman H, Lind M, Cawkwell L (2004) Do beta-tubulin mutations have a role in resistance to chemotherapy? Lancet 5:158–164CrossRefGoogle Scholar
  46. 46.
    Gonzalez-Garay ML, Chang L, Blade K, Menick DR, Cabral F (1999) A beta-tubulin leucine cluster involved in microtubule assembly and paclitaxel resistance. J Biol Chem 274:23875–23882PubMedCrossRefGoogle Scholar
  47. 47.
    Cabral FR, Brady RC, Schibler MJ (1986) A mechanism of cellular resistance to drugs that interfere with microtubule assembly. Ann NY Acad Sci 466:745–756PubMedCrossRefGoogle Scholar
  48. 48.
    Maeno K, Ito K, Hama Y, Shingu K, Kimura M, Sano M, Nakagomi H, Tsuchiya S, Fujimori M (2003) Mutation of the class I beta-tubulin gene does not predict response to paclitaxel for breast cancer. Cancer Lett 198:89–97PubMedCrossRefGoogle Scholar
  49. 49.
    Fan W (1999) Possible mechanisms of paclitaxel-induced apoptosis. Biochem Pharmacol 57:1215–1221PubMedCrossRefGoogle Scholar
  50. 50.
    Haldar S, Basu A, Croce CM (1997) Bcl2 is the guardian of microtubule integrity. Cancer Res 57:229–233PubMedGoogle Scholar
  51. 51.
    Srivastava RK, Srivastava AR, Korsmeyer SJ, Nesterova M, Cho-Chung YS, Longo DL (1998) Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol Cell Biol 18:3509–3517PubMedGoogle Scholar
  52. 52.
    Rodi DJ, Janes RW, Sanganee HJ, Holton RA, Wallace BA, Makowski L (1999) Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 285:197–203PubMedCrossRefGoogle Scholar
  53. 53.
    Korsmeyer SJ (1999) BCL-2 gene family and the regulation of programmed cell death. Cancer Res 59:1693s–1700sGoogle Scholar
  54. 54.
    Greenberger LM, Sampath D (2012) Cancer drug resistance. Human Press Inc, TotowaGoogle Scholar
  55. 55.
    Huang Y, Ray S, Reed JC, Ibrado AM, Tang C, Nawabi A, Bhalla K (1997) Estrogen increases intracellular p26Bcl-2 to p21Bax ratios and inhibits taxol-induced apoptosis of human breast cancer MCF-7 cells. Breast Cancer Res Tr 42:73–81CrossRefGoogle Scholar
  56. 56.
    Sui M, Huang Y, Park BH, Davidson N, Fan W (2007) Estrogen receptor alpha mediates breast cancer cell resistance to paclitaxel through inhibition of apoptotic cell death. Cancer Res 67:5337–5344PubMedCrossRefGoogle Scholar
  57. 57.
    Henderson C, Berry D, Demetri G, Cirrincione C, Goldstein L, Martino S, Ingle J, Cooper R, Hayes D, Tkaczuk K, Fleming G, Holland J, Duggan D, Carpenter J, Frei E, Schilsky R, Wood W, Muss H, Norton L (2003) Improved outcomes from adding sequential Paclitaxel but not from escalating Doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol 21:976–983PubMedCrossRefGoogle Scholar
  58. 58.
    Lippman ME, Allegra JC, Thompson EB, Simon R, Barlock A, Green L, Huff KK, Do HM, Aitken SC, Warren R (1978) The relation between estrogen receptors and response rate to cytotoxic chemotherapy in metastatic breast cancer. New Engl J Med 298:1223–1228PubMedCrossRefGoogle Scholar
  59. 59.
    Maehara Y, Emi Y, Sakaguchi Y, Kusumoto T, Kakeji Y, Kohnoe S, Sugimachi K (1990) Estrogen-receptor-negative breast cancer tissue is chemosensitive in vitro compared with estrogen-receptor-positive tissue. Eur Surg Res 22:50–55PubMedCrossRefGoogle Scholar
  60. 60.
    Wang Z, Goulet R, Stanton K, Sadaria M, Nakshatri H (2005) Differential effect of anti-apoptotic genes Bcl-xL and c-FLIP on sensitivity of MCF-7 breast cancer cells to paclitaxel and docetaxel. Anticancer Res 25:2367–2379PubMedGoogle Scholar
  61. 61.
    Garrison JB, Samuel T, Reed JC (2009) TRAF2-binding BIR1 domain of c-IAP2/MALT1 fusion protein is essential for activation of NF-kappaB. Oncogene 28:1584–1593PubMedCrossRefGoogle Scholar
  62. 62.
    Hettmann T, DiDonato J, Karin M, Leiden JM (1999) An essential role for nuclear factor kappaB in promoting double positive thymocyte apoptosis. J Exp Med 189:145–158PubMedCrossRefGoogle Scholar
  63. 63.
    Montagut C, Tusquets I, Ferrer B, Corominas JM, Bellosillo B, Campas C, Suarez M, Fabregat X, Campo E, Gascon P, Serrano S, Fernandez PL, Rovira A, Albanell J (2006) Activation of nuclear factor-kappa B is linked to resistance to neoadjuvant chemotherapy in breast cancer patients. Endocr Relat Cancer 13:607–616PubMedCrossRefGoogle Scholar
  64. 64.
    Verdier-Pinard P, Wang F, Martello L, Burd B, Orr G, Horwitz SB (2003) Analysis of tubulin isotypes and mutations from taxol-resistant cells by combined isoelectrofocusing and mass spectrometry. Biochem 42:5349–5357CrossRefGoogle Scholar
  65. 65.
    Hasegawa S, Miyoshi Y, Egawa C, Ishitobi M, Taguchi T, Tamaki Y, Monden M, Noguchi S (2003) Prediction of response to docetaxel by quantitative analysis of class I and III beta-tubulin isotype mRNA expression in human breast cancers. Clin Cancer Res 9:2992–2997PubMedGoogle Scholar
  66. 66.
    Paradiso A, Mangia A, Chiriatti A, Tommasi S, Zito A, Latorre A, Schittulli F, Lorusso V (2005) Biomarkers predictive for clinical efficacy of taxol-based chemotherapy in advanced breast cancer. Ann Oncol 16(4): Google Scholar
  67. 67.
    Bissell MJ, Barcellos-Hoff MH (1987) The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci 8:327–343Google Scholar
  68. 68.
    DeCosse JJ, Gossens CL, Kuzma JF, Unsworth BR (1973) Breast cancer: induction of differentiation by embryonic tissue. Science 181:1057–1058PubMedCrossRefGoogle Scholar
  69. 69.
    Farber E (1984) Pre-cancerous steps in carcinogenesis. Their physiological adaptive nature. Biochim Biophys Acta 738:171–180PubMedGoogle Scholar
  70. 70.
    Barcellos-Hoff MH, Medina D (2005) New highlights on stroma-epithelial interactions in breast cancer. Breast Cancer Res 7:33–36PubMedCrossRefGoogle Scholar
  71. 71.
    Ben-Baruch A (2006) The multifaceted roles of chemokines in malignancy. Cancer Metast Rev 25:357–371CrossRefGoogle Scholar
  72. 72.
    Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527PubMedCrossRefGoogle Scholar
  73. 73.
    Dalberg U, Markholst H, Hornum L (2007) Both Gimap5 and the diabetogenic BBDP allele of Gimap5 induce apoptosis in T cells. Int Immunol 19:447–453PubMedCrossRefGoogle Scholar
  74. 74.
    Marchini C, Montani M, Konstantinidou G, OrrÇû R, Mannucci S, Ramadori G, Gabrielli F, Baruzzi A, Berton G, Merigo F, Fin S, Iezzi M, Bisaro B, Sbarbati A, Zerani M, GaliÇù M, Amici A (2010) Mesenchymal/stromal gene expression signature relates to basal-like breast cancers, identifies bone metastasis and predicts resistance to therapies. PloS one 5:e14131Google Scholar
  75. 75.
    Tannock IF (1968) The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Brit J Cancer 22:258–273PubMedCrossRefGoogle Scholar
  76. 76.
    Tannock I (1978) Cell kinetics and chemotherapy: a critical review. Cancer Tr Rep 62:1117–1133Google Scholar
  77. 77.
    Tredan O, Galmarini C, Patel K, Tannock I (2007) Drug resistance and the solid tumor microenvironment. J Nat Cancer Inst 99:1441–1454PubMedCrossRefGoogle Scholar
  78. 78.
    Rice GC, Hoy C, Schimke RT (1986) Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. PNAS 83:5978–5982PubMedCrossRefGoogle Scholar
  79. 79.
    Wardman P (2001) Electron transfer and oxidative stress as key factors in the design of drugs selectively active in hypoxia. Curr Med Chem 8:739–761PubMedCrossRefGoogle Scholar
  80. 80.
    Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. TIBS 24:68–72PubMedGoogle Scholar
  81. 81.
    Warburg O (1956) On the origin of cancer cells. Science 123:309–314PubMedCrossRefGoogle Scholar
  82. 82.
    Tatum J, Kelloff G, Gillies R, Arbeit J, Brown M, Chao C, Chapman D, Eckelman W, Fyles A, Giaccia A, Hill R, Koch C, Krishna MC, Krohn K, Lewis J, Mason R, Melillo G, Padhani A, Powis G, Rajendran J, Reba R, Robinson S, Semenza G, Swartz H, Vaupel P, Yang D, Croft B, Hoffman J, Liu G, Stone H, Sullivan D (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82:699–757PubMedCrossRefGoogle Scholar
  83. 83.
    Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology Sem. Radiat Oncol 14:198–206CrossRefGoogle Scholar
  84. 84.
    Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384PubMedGoogle Scholar
  85. 85.
    Gerweck L, Vijayappa S, Kozin S (2006) Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Molecular Cancer Ther 5:1275–1279CrossRefGoogle Scholar
  86. 86.
    Lankelma J, Dekker H, Luque FR, Luykx S, Hoekman K, van der Valk P, van Diest PJ, Pinedo HM (1999) Doxorubicin gradients in human breast cancer. Clin Cancer Res 5:1703–1707PubMedGoogle Scholar
  87. 87.
    Lee CM, Tannock IF (2006) Inhibition of endosomal sequestration of basic anticancer drugs: influence on cytotoxicity and tissue penetration. Brit J Cancer 94:863–869PubMedCrossRefGoogle Scholar
  88. 88.
    Park CH, Bergsagel DE, McCulloch EA (1971) Mouse myeloma tumor stem cells: a primary cell culture assay. J Nat Cancer Inst 46:411–422PubMedGoogle Scholar
  89. 89.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648PubMedCrossRefGoogle Scholar
  90. 90.
    Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 4:1038–1045PubMedCrossRefGoogle Scholar
  91. 91.
    O’Brien C, Pollett A, Gallinger S, Dick J (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110PubMedCrossRefGoogle Scholar
  92. 92.
    Collins A, Berry P, Hyde C, Stower M, Maitland N (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951PubMedCrossRefGoogle Scholar
  93. 93.
    Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H (2006) Characterization of CD133 + hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Bioph Res Co 351:820–824CrossRefGoogle Scholar
  94. 94.
    Izrailit J, Reedijk M (2012) Developmental pathways in breast cancer and breast tumor-initiating cells: therapeutic implications. Cancer Lett 317:115–126PubMedCrossRefGoogle Scholar
  95. 95.
    Neuzil J, Stantic M, Zobalova R, Chladova J, Wang X, Prochazka L, Dong L, Andera L, Ralph S (2007) Tumour-initiating cells vs. cancer ‘stem’ cells and CD133: what’s in the name? Biochem Biophys Res Commun 355:855–859PubMedCrossRefGoogle Scholar
  96. 96.
    Liu CG, Lu Y, Wang BB, Zhang YJ, Zhang RS, Lu Y, Chen B, Xu H, Jin F, Lu P (2011) Clinical implications of stem cell gene Oct-4 expression in breast cancer. Ann Surg 253:1165–1171PubMedCrossRefGoogle Scholar
  97. 97.
    Nakshatri H, Srour EF, Badve S (2009) Breast cancer stem cells and intrinsic subtypes: controversies rage on. Curr Stem Cell Res Ther 4:50–60PubMedCrossRefGoogle Scholar
  98. 98.
    Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334PubMedCrossRefGoogle Scholar
  99. 99.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de RM, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874Google Scholar
  100. 100.
    Esserman LJ, Berry DA, Cheang MC, Yau C, Perou CM, Carey L, Demichele A, Gray JW, Conway-Dorsey K, Lenburg ME, Buxton MB, Davis SE, Van’t Veer LJ, Hudis C, Chin K, Wolf D, Krontiras H, Montgomery L, Tripathy D, Lehman C, Liu MC, Olopade OI, Rugo HS, Carpenter JT, Livasy C, Dressler L, Chhieng D, Singh B, Mies C, Rabban J, Chen YY, Giri D, Au A, Hylton N (2012) Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res Tr 132:1049–1062CrossRefGoogle Scholar
  101. 101.
    Sorlie T, Perou CM, Fan C, Geisler S, Aas T, Nobel A, Anker G, Akslen LA, Botstein D, Borresen-Dale AL, Lonning PE (2006) Gene expression profiles do not consistently predict the clinical treatment response in locally advanced breast cancer. Mol Cancer Ther 5:2914–2918PubMedCrossRefGoogle Scholar
  102. 102.
    Yoshimoto M, Takao S, Hirata M, Okamoto Y, Yamashita S, Kawaguchi Y, Takami M, Furusawa H, Morita S, Abe C, Sakamoto J (2012) Metronomic oral combination chemotherapy with capecitabine and cyclophosphamide: a phase II study in patients with HER2-negative metastatic breast cancer. Cancer Chemoth PharmGoogle Scholar
  103. 103.
    O’Shaughnessy J (2003) Gemcitabine combination chemotherapy in metastatic breast cancer: phase II experience. Oncology 17:15–21PubMedGoogle Scholar
  104. 104.
    Akhtar N, Ahad A, Khar RK, Jaggi M, Aqil M, Iqbal Z, Ahmad FJ, Talegaonkar S (2011) The emerging role of P-glycoprotein inhibitors in drug delivery: a patent review. Expert Opin Ther Pat 21:561–576PubMedCrossRefGoogle Scholar
  105. 105.
    Bates S, Chen C, Robey R, Kang M, Figg W, Fojo T (2002) Reversal of multidrug resistance: lessons from clinical oncology. Novart Fnd Symp 243:83–96Google Scholar
  106. 106.
    Plowe CV (2005) Antimalarial drug resistance in Africa: strategies for monitoring and deterrence. Current Topics Microbiol 295:55–79CrossRefGoogle Scholar
  107. 107.
    Savarino A, Lucia M, Giordano F, Cauda R (2006) Risks and benefits of chloroquine use in anticancer strategies. Lancet Oncol 7:792–793PubMedCrossRefGoogle Scholar
  108. 108.
    Savarino A, Boelaert J, Cassone A, Majori G, Cauda R (2003) Effects of chloroquine on viral infections: an old drug against today’s diseases. Lancet Infect Dis 3:722–727PubMedCrossRefGoogle Scholar
  109. 109.
    Sotelo J, Briceño E, López-González MA (2006) Adding chloroquine to conventional chemotherapy and radiotherapy for glioblastoma multiforme. Ann Int Med 144:337–343PubMedGoogle Scholar
  110. 110.
    Kim E, Wustenberg R, Rubsam A, Schmitz-Salue C, Warnecke G, Bucker EM, Pettkus N, Speidel D, Rohde V, Schulz-Schaeffer W, Deppert W, Giese A (2010) Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells. Neuro Oncol 12:389–400PubMedCrossRefGoogle Scholar
  111. 111.
    Parissenti AM, Chapman JA, Kahn HJ, Guo B, Han L, O’Brien P, Clemons MP, Jong R, Dent R, Fitzgerald B, Pritchard KI, Shepherd LE, Trudeau ME (2010) Association of low tumor RNA integrity with response to chemotherapy in breast cancer patients. Breast Cancer Res Tr 119:347–356CrossRefGoogle Scholar
  112. 112.
    Gnant M, Steger GG (2009) Fighting overtreatment in adjuvant breast cancer therapy. Lancet 374:2029–2030PubMedCrossRefGoogle Scholar
  113. 113.
    Albain KS, Barlow WE, Ravdin PM, Farrar WB, Burton GV, Ketchel SJ, Cobau CD, Levine EG, Ingle JN, Pritchard KI, Lichter AS, Schneider DJ, Abeloff MD, Henderson IC, Muss HB, Green SJ, Lew D, Livingston RB, Martino S, Osborne CK (2009) Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet 374:2055–2063PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Derek Edwardson
    • 1
  • Simon Chewchuk
    • 1
  • Amadeo M. Parissenti
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Graduate Program in Biomolecular ScienceLaurentian UniversitySudburyCanada
  2. 2.Department of Chemistry and BiochemistryLaurentian UniversitySudburyCanada
  3. 3.Division of Medical SciencesNorthern Ontario School of MedicineSudburyCanada
  4. 4.Divison of Oncology, Faculty of MedicineUniversity of OttawaOttawaCanada
  5. 5.Northeast Cancer Centre, Health Sciences NorthSudburyCanada

Personalised recommendations