Iris Pattern Recognition with a New Mathematical Model to Its Rotation Detection

  • Krzysztof Misztal
  • Emil Saeed
  • Jacek Tabor
  • Khalid Saeed
Chapter

Abstract

The work deals with the iris pattern recognition as one of the most popular automated biometric ways of individual identification. It is based on the acquired eye images in which we localize the region of interest – the iris. This extremely data-rich biometric identifier is stable throughout human life and well protected as internal part of the eye. Moreover, it is genetic independent, so that we can use it to identify or verify people among huge population. This chapter will present the human vision nature focusing on defects and diseases that change the surface information of the iris. Also will be shown the main stream and the historical background of mathematical research resulting in a new algorithm for automatic iris feature extraction. A special attention is paid to the method developed to detect the iris rotation for accurate success rate under different destructive problems and environmental conditions. The obtained results after using the new mathematical model have proved the algorithm high success rate in iris pattern recognition.

References

  1. 1.
    Bertillon A (1885) La couleur de l’iris. Rev Sci 36(5):65–73Google Scholar
  2. 2.
    John Daugman’s webpage, Cambridge University, Faculty of Computer Science & Technology, Cambridge. http://www.cl.cam.ac.uk/~jgd1000/. Accessed 28 May 2012
  3. 3.
    Iridian Technologies: about Iridian. In: Historical timeline. http://www.iriscan.com/about.php?page=4. Accessed 28 May 2012
  4. 4.
    Iris ID – Iris Recognition Technology. http://www.irisid.com. Accessed 28 May 2012
  5. 5.
    Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Stamp M, Wiley J (2006) Information security: principles and practice. Wiley Online Library, Hoboken, NJGoogle Scholar
  8. 8.
    April E (1997) Clinical anatomy. Williams and Wilkins, BaltimoreGoogle Scholar
  9. 9.
    Tasman W, Jaeger EA (2007) Duane’s clinical ophthalmology. Williams and Wilkins, PhiladelphiaGoogle Scholar
  10. 10.
    Medscape reference. In: Drugs, diseases and procedures, image no. 3, 6, and 13. http://reference.medscape.com/features/slideshow/iris-changes. Accessed 28 May 2012
  11. 11.
    London NJS, Cunningham ET (2012) Prompt and aggressive treatment might have preserved this mechanic’s vision. http://www.aao.org/publications/eyenet/200804/am_rounds.cfm. Accessed 28 May 2012
  12. 12.
    Shiuey Y (2012) General ophthalmology quiz 6, Digital Journal of Ophthalmology – knowledge review. http://www.djo.harvard.edu/site.php?url=/physicians/kr/459&page=KR_AN. Accessed 28 May 2012
  13. 13.
    Digital reference of ophthalmology, review, Columbia University, New York. At: http://dro.hs.columbia.edu
  14. 14.
    Fulk G (2012) Ocular disease I: glaucoma, uveitis and lens disorders, photo no. 38, Northeastern State University. http://arapaho.nsuok.edu. Accessed 28 May 2012
  15. 15.
    Children network – disease research and education network, fig. 3. http://childrennetwork.org/physicians/ags.html. Accessed 28 May 2012
  16. 16.
    Jonathan T (2012) A systemic problem, Bascom Palmer Eye Institute Grand Rounds. http://media.med.miami.edu. Accessed 28 May 2012
  17. 17.
    Cackett P, Vallance J, Bennett H (2005) Neurofibromatosis type 1 presenting with Horner’s syndrome. Nat Eye 19:351–353. doi:10.1038/sj.eye.6701478, Published online. Available (19.04.2012) at: http://www.nature.com/ CrossRefGoogle Scholar
  18. 18.
    Dong W, Sun Z, Tan T (2009) A design of iris recognition system at a distance. In: Chinese conference on pattern recognition 4–6 November 2009, Nanjing, China, (CCPR 2009). http://avss2012.org/2009papers/gjhy/gh99.pdf. Accessed 21 September 2012
  19. 19.
    Masek L (2003) Recognition of human iris patterns for biometric identification. Master’s thesis, University of Western AustraliaGoogle Scholar
  20. 20.
    Farag AA, Elhabian SY (2012) Iris recognition. http://www.cvip.uofl.edu/wwwcvip/education/ECE523/Iris%20Biometrics.pdf. Accessed 28 May 2012
  21. 21.
    Daugman J (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 15(11):1148–1161CrossRefGoogle Scholar
  22. 22.
    Wildes RP (1997) Iris recognition: an emerging biometric technology. Proc IEEE 85(9):1348–1363CrossRefGoogle Scholar
  23. 23.
    Boles W, Boashash B (1998) A human identification technique using images of the iris and wavelet transform. IEEE Trans Signal Process 46(4):1185–1188CrossRefGoogle Scholar
  24. 24.
    Huang YP, Luo SW, Chen EY (2002) An efficient iris recognition system. In: Proceedings of 2002 international conference on machine learning and cybernetics, 4–5 November 2002, Beijing, China, vol 1, pp 450–454Google Scholar
  25. 25.
    Zhu Y, Tan T, Wang Y (2000) Biometric personal identification based on iris patterns. In: Proceedings of 15th international conference on pattern recognition, 3–7 September 2000, Barcelona, Spain, vol 2, pp 801–804. http://www.cbsr.ia.ac.cn/publications/yzhu/Biometric%20Personal%20Identification%20Based%20on%20Iris%20Patterns.pdf. Accessed 21 September 2012
  26. 26.
    Harowitz S (2007) Faking fingerprints and eying solutions. Secur Manage MagGoogle Scholar
  27. 27.
    Center for Biometrics and Security Research. http://www.cbsr.ia.ac.cn. Accessed 28 May 2012
  28. 28.
    Daugman J (2007) New methods in iris recognition. IEEE Trans Syst Man Cybern B: Cybernetics 37(5):1167–1175CrossRefGoogle Scholar
  29. 29.
    Oppenheim AV, Lim JS (1981) The importance of phase in signals. Proc IEEE 69(5):529–541CrossRefGoogle Scholar
  30. 30.
    Daugman J (2004) How iris recognition works. IEEE Trans Circuits Syst Video Technol 14(1):21–30CrossRefGoogle Scholar
  31. 31.
    Takano H, Nakamura K (2009) Rotation independent iris recognition by the rotation spreading neural network. In: IEEE 13th international symposium on consumer electronics, 25–28 May 2009, Kyoto, Japan. ISCE’09, pp 651–654Google Scholar
  32. 32.
    Velisavljevic V (2009) Low-complexity iris coding and recognition based on directionlets. IEEE Trans Inf Forensics Secur 4(3):410–417CrossRefGoogle Scholar
  33. 33.
    Gonzalez RC, Woods RE (2002) Digital image processing. Prentice Hall, Upper Saddle RiverGoogle Scholar
  34. 34.
    Du Y, Chang CI, Ren H, Chang CC, Jensen JO, D’Amico FM (2004) New hyperspectral discrimination measure for spectral characterization. Opt Eng 43:1777CrossRefGoogle Scholar
  35. 35.
    Chang CI (2003) Hyperspectral imaging: techniques for spectral detection and classification. Springer, New YorkGoogle Scholar
  36. 36.
    Du Y, Ives RW, Etter DM, Welch TB (2006) Use of one-dimensional iris signatures to rank iris pattern similarities. Opt Eng 45:037201CrossRefGoogle Scholar
  37. 37.
    Wildes RP, Asmuth JC, Green GL, Hsu SC, Kolczynski RJ, Matey JR, McBride SE (1994) A system for automated iris recognition. In: Proceedings of the second IEEE workshop on applications of computer vision, 5–7 December 1994, Sarasota, FL, USA pp 121–128Google Scholar
  38. 38.
    Illingworth J, Kittler J (1988) A survey of the Hough transform. Comput Vision Graph Image Process 44(1):87–116CrossRefGoogle Scholar
  39. 39.
    Kong WK, Zhang D (2001) Accurate iris segmentation based on novel reflection and eyelash detection model. In: Proceedings of 2001 international symposium on Intelligent multimedia, video and speech processing, 2–4 May 2001, Hong Kong, China pp 263–266. http://www3.ntu.edu.sg/home/AdamsKong/publication/ISIM.pdf. Accessed 21 September 2012
  40. 40.
    Tisse C, Martin L, Torres L, Robert M (2002) Person identification technique using human iris recognition. In: Proceedings of vision interface, pp 294–299. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.3130&rep=rep1&type=pdf. Accessed 21 September 2012
  41. 41.
    Ma L, Wang Y, Tan T (2002) Iris recognition using circular symmetric filters. In: Proceedings of 16th international conference on pattern recognition, 11–15 August 2002, Quebec City, QC, Canada vol 2, pp 414–417. http://hci.iwr.uni-heidelberg.de/publications/dip/2002/ICPR2002/DATA/05_2_25.PDF. Accessed 21 September 2012
  42. 42.
    Burt P, Adelson E (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Krzysztof Misztal
    • 1
  • Emil Saeed
    • 2
  • Jacek Tabor
    • 3
  • Khalid Saeed
    • 4
  1. 1.AGH University of Science and TechnologyKrakówPoland
  2. 2.Medical University in BialystokBialystokPoland
  3. 3.Jagiellonian UniversityKrakówPoland
  4. 4.Faculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyKrakówPoland

Personalised recommendations