Advertisement

Dynamic Mutations

Where Are They Now?
  • Clare L. van EykEmail author
  • Robert I. Richards
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

Dynamic mutations are those caused by the expansion of existing polymorphic DNA repeat sequences beyond a copy number threshold. These genetic mutations can give rise to dominant, recessive or X-linked disorders, dependent upon the location of the repeat sequence with respect to the genes that are affected by the expansion. The distinguishing feature of these mutations is their instability, which is a function of the copy number of repeats and can occur in either meiosis or mitosis. For some of the resultant disorders there is a relationship between repeat copy number and age-at-onset and/or severity of symptoms of the disease.For this reason much effort is now focused on identifying the pathogenic pathways from the mutation to the disease symptoms in the hope of finding means of delaying onset, slowing progression or even preventing symptoms of the disease. The growing list of neuro degenerative and neuromuscular diseases caused by dynamic mutations includes Huntington’ s disease (HD), spinobulbar muscular atrophy (SBMA),dentatorubral-pallidoluysian atrophy (DRPLA), a number of spinocerebellar ataxias (SCAs), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy Type 1 and 2 (DM1 and 2), Huntington’s disease-like 2 (HDL-2), Friedrich’s ataxia (FRDA), Fragile X associated tremor ataxia syndrome (FXTAS), Fragile XE (FRAXE) and Fragile XA (FRAXA). This chapter aims to give a brief overview of what is currently known about each disease and the mechanisms underlying pathogenesis.

Keywords

Myotonic Dystrophy Spinocerebellar Ataxia Spinocerebellar Ataxia Type Myotonic Dystrophy Type Dynamic Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kremer EJ, Pritchard M, Lynch M et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 1991; 252:1711–4.PubMedCrossRefGoogle Scholar
  2. 2.
    La Spada AR, Wilson EM, Lubahn DB et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352:77–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Martorell L, Monckton DG, Gamez J et al. Progression of somatic CTG repeat length heterogeneity in the blood cells of myotonic dystrophy patients. Hum Mol Genet 1998; 7:307–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Cleary JD, Nichol K, Wang YH, Pearson CE. Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells. Nat Genet 2002; 31:37–46.PubMedCrossRefGoogle Scholar
  5. 5.
    Yang Z, Lau R, Marcadier JL et al. Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type 1 disease locus inhuman cells. Am J Hum Genet 2003; 73:1092–105.PubMedCrossRefGoogle Scholar
  6. 6.
    Liu G, Chen X, Bissler JJ et al. Replication-dependent instability at (CTG)·(CAG) repeat hairpins in human cells. Nat Chem Biol 2010; 6:652–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Freudenreich CH, Lahiri M. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases. Cell Cycle 2004; 3:1370–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Sarkar PS, Chang HC, Boudi FB, Reddy S. CTG repeats show bimodal amplification in E. coli. Cell 1998; 95:531–40.CrossRefGoogle Scholar
  9. 9.
    Pollard LM, Sharma R, Gomez M et al. Replication-mediated instability of the GAA triplet repeat mutation in Friedreich ataxia. Nucleic Acids Res 2004; 32:5962–71.PubMedCrossRefGoogle Scholar
  10. 10.
    Spiro C, Pelletier R, Rolfsmeier ML et al. Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol Cell 1999; 4:1079–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Yang J, Freudenreich CH. Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner. Gene 2007; 393:110–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Møllersen L, Rowe AD, Larsen E et al. Continuous and periodic expansion of CAG repeats in Huntington’s disease R6/1 mice. PLoS Genet 2010; 6:e1001242.PubMedCrossRefGoogle Scholar
  13. 13.
    Kennedy L, Shelbourne PF. Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington’s disease? Hum Mol Genet 2000; 9:2539–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Kennedy L, Evans E, Chen CM et al. Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis. Hum Mol Genet 2003; 12:3359–67.PubMedCrossRefGoogle Scholar
  15. 15.
    Cleary JD, Tome S, Lopez Castel A et al. Tissue-and age-specific DNA replication patterns at the CTG/ CAG-expanded human myotonic dystrophy type 1 locus. Nat Struct Mol Biol 2010; 17:1079–87.PubMedCrossRefGoogle Scholar
  16. 16.
    Edwards SF, Hashem VI, Klysik EA, Sinden RR. Genetic instabilities of (CCTG).(CAGG) and (ATTCT). (AGAAT) disease-associated repeats reveal multiple pathways for repeat deletion. Mol Carcinog 2009; 48:336–49.Google Scholar
  17. 17.
    Jarem DA, Wilson NR, Delaney S. Structure-dependent DNA damage and repair in a trinucleotide repeat sequence. Biochemistry 2009; 48:6655–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Kovtun IV, Liu Y, Bjoras M et al. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 2007; 447:447–52.PubMedCrossRefGoogle Scholar
  19. 19.
    van den Broek WJ, Nelen MR, Wansink DG et al. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum Mol Genet 2002; 11:191–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Tome S, Holt I, Edelmann W et al. MSH2 ATPase domain mutation affects CTG*CAG repeat instability in transgenic mice. PLoS Genet 2009; 5(5): e 1000482.CrossRefGoogle Scholar
  21. 21.
    Foiry L, Dong L, Savouret C et al. Msh3 is a limiting factor in the formation of intergenerational CTG expansions in DM1 transgenic mice. Hum Genet 2006; 119:520–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Wheeler VC, Lebel LA, Vrbanac V et al. Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Hum Mol Genet 2003; 12:273–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Sundararajan R, Gellon L, Zunder RM, Freudenreich CH. Double-strand break repair path ways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae. Genetics 2010; 184:65–77.PubMedCrossRefGoogle Scholar
  24. 24.
    Pollard LM, Bourn RL, Bidichandani SI. Repair of DNA double-strand breaks within the (GAA*TTC)n sequence results in frequent deletion of the triplet-repeat sequence. Nucleic Acids Res 2008; 36:489–500.PubMedCrossRefGoogle Scholar
  25. 25.
    Michel B, Ehrlich SD, Uzest M. DNA double-strand breaks caused by replication arrest. EMBO J 1997; 16:430–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Richard GF, Paques F. Mini-and microsatellite expansions: the recombination connection. EMBO Rep 2000; 1:122–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Tsuji S. Molecular genetics of triplet repeats: unstable expansion of triplet repeats as a new mechanism for neurodegenerative diseases. Intern Med 1997; 36:3–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Richards RI. Dynamic mutations: a decade of unstable expanded repeats in human genetic disease. Hum Mol Genet 2001; 10:2187–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Sieradzan KA, Mann DMA. The selective vulnerability of nerve cells in Huntington’s disease. Neuropathol Appl Neurobiol 2001; 27:1–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Gutekunst CA, Levey A, Heilman C et al. Identification and localization of Huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc Natl Acad Sci USA 1995; 92:8710–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Velier J, Kim M, Schwarz C et al. Wild-type and mutant Huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp Neurol 1998; 152:34–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Trushina E, Dyer RB, Badger JD II et al. Mutant Huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 2004; 24:8195–209.PubMedCrossRefGoogle Scholar
  33. 33.
    Sinadinos C, Burbidge-King T, Soh D et al. Live axonal transport disruption by mutant huntingtin fragments in Drosophila motor neuron axons. Neurobiol Dis 2009; 34:389–95.PubMedCrossRefGoogle Scholar
  34. 34.
    Gunawardena S, Her LS, Brusch RG et al. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 2003; 40:25–40.PubMedCrossRefGoogle Scholar
  35. 35.
    Landwehrmeyer GB, McNeil SM, Dure LSt et al. Huntington’s disease gene: regional and cellular expression in brain of normal and affected individuals. Ann Neurol 1995; 37:218–30.PubMedCrossRefGoogle Scholar
  36. 36.
    Fusco FR, Chen Q, Lamoreaux WJ et al. Cellular localization of Huntingtin in striatal and cortical neurons in rats: lack of correlation withneuronal vulnerability in Huntington’s disease. JNeurosci 1999; 19:1189–202.Google Scholar
  37. 37.
    Hardy J, Orr H. The genetics of neurodegenerative diseases. J Neurochem 2006; 97:1690–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 1994;22:3181–6.PubMedCrossRefGoogle Scholar
  39. 39.
    MacLean HE, Warne GL, Zajac JD. Spinal and bulbar muscular atrophy: androgen receptor dysfunction caused by a trinucleotide repeat expansion. J Neurol Sci 1996; 135:149–57.PubMedCrossRefGoogle Scholar
  40. 40.
    Thomas PS Jr., Fraley GS, Damien V et al. Loss of endogenous androgen receptor protein accelerates motor neuron degeneration and accentuates androgen insensitivity in a mouse model of X-linked spinal and bulbar muscular atrophy. Hum Mol Genet 2006; 15:2225–38.PubMedCrossRefGoogle Scholar
  41. 41.
    Uyama E, Kondo I, Uchino M et al. Dentatorubral-pallidoluysian atrophy (DRPLA): clinical, genetic, and neuroradiologic studies in a family. J Neurol Sci 1995; 130:146–53.PubMedCrossRefGoogle Scholar
  42. 42.
    Burke JR, Wingfield MS, Lewis KE et al. The Haw River syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nat Genet 1994; 7:521–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Nagafuchi S, Yanagisawa H, Ohsaki E et al. Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat Genet 1994; 8:177–82.PubMedCrossRefGoogle Scholar
  44. 44.
    Margolis RL, Li S-H, Scott Young W et al. DRPLA gene (Atrophin-1) sequence and mRNA expression in human brain. Brain Res Mol Brain Res 1996; 36:219–26.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang L, Rajan H, Pitman JL et al. Histone deacetylase-associating Atrophin proteins are nuclear receptor corepressors. Genes Dev 2006; 20:525–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Schilling G, Wood JD, Duan K et al. Nuclear accumulation of truncated atrophin-1 fragments in atransgenic mouse model of DRPLA. Neuron 1999; 24:275–86.PubMedCrossRefGoogle Scholar
  47. 47.
    Yu J, Ying M, Zhuang Y et al. C-terminal deletion of the atrophin-1 protein results in growth retardation but not neurodegeneration in mice. Dev Dyn 2009; 238:2471–8.PubMedCrossRefGoogle Scholar
  48. 48.
    van de Warrenburg BPC, Notermans NC, Schelhaas HJ et al. Peripheral nerve involvement in spinocerebellar ataxias. Arch Neurol 2004; 61:257–61.PubMedCrossRefGoogle Scholar
  49. 49.
    Carlson KM, Andresen JM, Orr HT. Emerging pathogenic pathways in the spinocerebellar ataxias. Curr Opin Genet Dev 2009; 19:247–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Yue S, Serra HG, Zoghbi HY, Orr HT. The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. Hum Mol Genet 2001; 10:25–30.PubMedCrossRefGoogle Scholar
  51. 51.
    Klement IA, Skinner PJ, Kaytor MD et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 1998; 95:41–53.PubMedCrossRefGoogle Scholar
  52. 52.
    Sharma D, Sharma S, Pasha S, Brahmachari SK. Peptide models for inherited neurodegenerative disorders: conformation and aggregation properties of long polyglutamine peptides with and without interruptions. FEBS Lett 1999; 456:181–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Imbert G, Saudou F, Yvert G et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 1996; 14:285–91.PubMedCrossRefGoogle Scholar
  54. 54.
    Satterfield TF, Pallanck LJ. Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. Hum Mol Genet 2006; 15:2523–32.PubMedCrossRefGoogle Scholar
  55. 55.
    Raiser M, Albrecht M, Nonhoff U et al. An integrative approach to gain insights into the cellular function of human ataxin-2. J Mol Biol 2005; 346:203–14.CrossRefGoogle Scholar
  56. 56.
    Satterfield TF, Jackson SM, Pallanck LJ. A Drosophila homolog of the polyglutamine disease gene SCA2 is a dosage-sensitive regulator of actin filament formation. Genetics 2002; 162:1687–702;.PubMedGoogle Scholar
  57. 57.
    Huynh DP, Figueroa K, Hoang N, Pulst S-M. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet 2000; 26:44–50.PubMedCrossRefGoogle Scholar
  58. 58.
    Klockgether T, Schols L, Abele M et al. Age related axonal neuropathy in spinocerebellar ataxia type 3/ Machado-Joseph disease (SCA3/MJD). J Neurol Neurosurg Psychiatry 1999; 66:222–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang G-h, Sawai N, Kotliarova S et al. Ataxin-3, the MJD1 gene product, interacts with the two human homologs of yeast DNA repair protein RAD23, HHR23 A and HHR23B. Hum Mol Genet 2000; 9:1795–803.PubMedCrossRefGoogle Scholar
  60. 60.
    Doss-Pepe EW, Stenroos ES, Johnson WG, Madura K. Ataxin-3 interactions with Rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol Cell Biol 2003; 23:6469–83.PubMedCrossRefGoogle Scholar
  61. 61.
    Chen X, Tang TS, Tu H et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci 2008; 28:12713–24.PubMedCrossRefGoogle Scholar
  62. 62.
    Jia NL, Fei EK, Ying Z et al. PolyQ-expanded ataxin-3 interacts with full-length ataxin-3 in a polyQ length-dependent manner. Neurosci Bull 2008; 24:201–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Frontali M. Spinocerebellar ataxia type 6: channelopathy or glutamine repeat disorder? Brain Res Bull 2001; 56:227–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Gazulla J, Tintore MA. The P/Q-type voltage-dependent calcium channel as pharmacological target in spinocerebellar ataxia type 6: gabapentin and pregabalin may be of therapeutic benefit. Med Hypotheses 2007; 68:131–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Watase K, Barrett CF, Miyazaki T et al. Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci USA 2008.Google Scholar
  66. 66.
    Michalik A, Martin JJ, Van Broeckhoven C. Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet 2004; 12:2–15.PubMedCrossRefGoogle Scholar
  67. 67.
    Ström A-L, Forsgren L, Holmberg M. A role for both wild-type and expanded ataxin-7 in transcriptional regulation. Neurobiol Dis 2005; 20:646–55.Google Scholar
  68. 68.
    Palhan VB, Chen S, Peng G-H et al. Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci USA 2005; 102:8472–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Chou AH, Chen CY, Chen SY et al. Polyglutamine-expanded ataxin-7 causes cerebellar dysfunction by inducing transcriptional dysregulation. Neurochem Int 2010; 56:329–39.PubMedCrossRefGoogle Scholar
  70. 70.
    van Roon-Mom WMC, Reid SJ, Faull RLM, Snell RG. TATA-binding protein in neurodegenerative disease. Neuroscience 2005; 133:863–72.PubMedCrossRefGoogle Scholar
  71. 71.
    Shah AG, Friedman MJ, Huang S et al. Transcriptional dysregulation of TrkA associates with neurodegeneration in spinocerebellar ataxia type 17. Hum Mol Genet 2009; 18:4141–52.PubMedCrossRefGoogle Scholar
  72. 72.
    DiFiglia M, Sapp E, Chase KO et al. Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997; 277:1990–3.PubMedCrossRefGoogle Scholar
  73. 73.
    Wells RD, Ashizawa T, eds. Genetic Instabilities and Neurological Diseases. San Diego: Academic Press, 2006.Google Scholar
  74. 74.
    Li H, Li S-H, Johnston H, Shelbourne PF, Li X-J. Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat Genet 2000; 25:385–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin Acts in the Nucleus to Induce Apoptosis but Death Does Not Correlate with the Formation of Intranuclear Inclusions. Cell 1998; 95:55–66.PubMedCrossRefGoogle Scholar
  76. 76.
    Nagai Y, Inui T, Popiel HA et al. A toxic monomeric conformer of the polyglutamine protein. Nat Struct Mol Biol 2007; 14:332–340.PubMedCrossRefGoogle Scholar
  77. 77.
    Takahashi T, Kikuchi S, Katada S et al. Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet 2008; 17:345–356.PubMedCrossRefGoogle Scholar
  78. 78.
    Lajoie P, Snapp EL. Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS One 2010;5:e15245.PubMedCrossRefGoogle Scholar
  79. 79.
    Michalik A, Van Broeckhoven C. Pathogenesis of polyglutamine disorders: aggregation revisited. Hum Mol Genet 2003; 12:R173–86.PubMedCrossRefGoogle Scholar
  80. 80.
    Lavoie H, Debeane F, Trinh Q-D et al. Polymorphism, shared functions and convergent evolution of genes with sequences coding for polyalanine domains. Hum Mol Genet 2003; 12:2967–79.PubMedCrossRefGoogle Scholar
  81. 81.
    Albrecht A, Mundlos S. The other trinucleotide repeat: polyalanine expansion disorders. Curr Opin Genet Dev 2005; 15:285–93.PubMedCrossRefGoogle Scholar
  82. 82.
    Brown LY, Brown SA. Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet 2004; 20:51–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Brais B, Bouchard JP, Xie YG et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 1998; 18:164–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Calado A, Tome FM, Brais B et al. Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 2000; 9:2321–8;.PubMedCrossRefGoogle Scholar
  85. 85.
    Toulouse A, Au-Yeung F, Gaspar C et al. Ribosomal frameshifting on MJD-1 transcripts with long CAG tracts. Hum Mol Genet 2005; 14:2649–60.PubMedCrossRefGoogle Scholar
  86. 86.
    Davies JE, Rubinsztein DC. Polyalanine and polyserine frameshift products in Huntington’s disease. J Med Genet 2006; 43:893–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Berger Z, Davies JE, Luo S et al. Deleterious and protective properties of an aggregate-prone protein with a polyalanine expansion. Hum Mol Genet 2006; 15:453–65.PubMedCrossRefGoogle Scholar
  88. 88.
    McLeod CJ, O’Keefe LV, Richards RI. The pathogenic agent in Drosophila models of ‘polyglutamine’ diseases. Hum Mol Genet 2005; 14:1041–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Pieretti M, Zhang FP, Fu YH et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 1991; 66:817–22.PubMedCrossRefGoogle Scholar
  90. 90.
    Garber K, Smith KT, Reines D, Warren ST. Transcription, translation and fragile X syndrome. Curr Opin Genet Dev 2006; 16:270–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Gu Y, Shen Y, Gibbs RA, Nelson DL. Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nat Genet 1996; 13:109–13.PubMedCrossRefGoogle Scholar
  92. 92.
    Gecz J, Gedeon AK, Sutherland GR, Mulley JC. Identification of the gene FMR2, associated with FRAXE mental retardation. Nat Genet 1996; 13:105–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Bensaid M, Melko M, Bechara EG et al. FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure. Nucleic Acids Res 2009; 37:1269–79.PubMedCrossRefGoogle Scholar
  94. 94.
    Delatycki MB, Knight M, Koenig M et al. G130V, a common FRDA point mutation, appears to have arisen from a common founder. Hum Genet 1999; 105:343–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Kumari D, Biacsi RE, Usdin K. Repeat expansion affects both transcription initiation and elongation in friedreich ataxia cells. J Biol Chem 2011; 286:4209;.PubMedCrossRefGoogle Scholar
  96. 96.
    Puccio H, Koenig M. Recent advances in the molecular pathogenesis of Friedreich ataxia. Hum Mol Genet 2000; 9:887–92.PubMedCrossRefGoogle Scholar
  97. 97.
    Ranum LP, Day JW. Myotonic dystrophy: RNA pathogenesis comes into focus. Am J Hum Genet 2004; 74:793–804.PubMedCrossRefGoogle Scholar
  98. 98.
    Giorgio A, Dotti MT, Battaglini M et al. Cortical damage in brains of patients with adult-form of myotonic dystrophy type 1 and no or minimal MRI abnormalities. JNeurol 2006; 253:1471–7.Google Scholar
  99. 99.
    Sistiaga A, Urreta I, Jodar M et al. Cognitive/personality pattern and triplet expansion size in adult myotonic dystrophy type 1 (DM1): CTG repeats, cognition and personality in DM1. Psychol Med 2010; 40:487–95.PubMedCrossRefGoogle Scholar
  100. 100.
    Seznec H, Agbulut O, Sergeant N et al. Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Hum Mol Genet 2001; 10:2717–26.PubMedCrossRefGoogle Scholar
  101. 101.
    Personius KE, Nautiyal J, Reddy S. Myotonia and muscle contractile properties in mice with SIX5 deficiency. Muscle Nerve 2005; 31:503–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Klesert TR, Cho DH, Clark JI et al. Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy. Nat Genet 2000; 25:105–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Mankodi A, Logigian E, Callahan L et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 2000; 289:1769–73.PubMedCrossRefGoogle Scholar
  104. 104.
    Ranum LPW, Cooper TA. RNA-mediated neuromuscular disorders. Annu Rev Neurosci 2006; 29:259–77.PubMedCrossRefGoogle Scholar
  105. 105.
    Ho TH, Savkur RS, Poulos MG et al. Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy. J Cell Sci 2005; 118:2923–33.PubMedCrossRefGoogle Scholar
  106. 106.
    Jiang H, Mankodi A, Swanson MS et al. Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet 2004; 13:3079–88.PubMedCrossRefGoogle Scholar
  107. 107.
    Kimura T, Nakamori M, Lueck JD et al. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+−ATPase in myotonic dystrophy type 1. Hum Mol Genet 2005; 14:2189–200.PubMedCrossRefGoogle Scholar
  108. 108.
    Mankodi A, Takahashi MP, Jiang H et al. Expanded CUG Repeats Trigger Aberrant Splicing of C1C-1 Chloride Channel Pre-mRNA and Hyperexcitability of Skeletal Muscle in Myotonic Dystrophy. Mol Cell 2002; 10:35–44.PubMedCrossRefGoogle Scholar
  109. 109.
    Savkur RS, Philips AV, Cooper TA et al. Insulin receptor splicing alteration in myotonic dystrophy type 2. Am J Hum Genet 2004; 74:1309–13.PubMedCrossRefGoogle Scholar
  110. 110.
    Finsterer J. Myotonic dystrophy type 2. Eur J Neurol 2002; 9:441–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Mankodi A, Urbinati CR, Yuan Q-P et al. Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet 2001; 10:2165–70.PubMedCrossRefGoogle Scholar
  112. 112.
    Salvatori S, Furlan S, Fanin M et al. Comparative transcriptional and biochemical studies in muscle of myotonic dystrophies (DM1 and DM2). Neurol Sci 2009; 30:185–92.PubMedCrossRefGoogle Scholar
  113. 113.
    Botta A, Vallo L, Rinaldi F et al. Gene expression analysis in myotonic dystrophy: indications for a common molecular pathogenic pathway in DM1 and DM2. Gene Expr 2007; 13:339–51.PubMedCrossRefGoogle Scholar
  114. 114.
    Mankodi A, Teng-Umnuay P, Krym M et al. Ribonuclear inclusions in skeletal muscle in myotonic dystrophy types 1 and 2. Ann Neurol 2003; 54:760–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Ho TH, Bundman D, Armstrong DL, Cooper TA. Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Hum Mol Genet 2005; 14:1539–47.PubMedCrossRefGoogle Scholar
  116. 116.
    Ho TH, Bundman D, Armstrong DL, Cooper TA. Transgenic mice expressing CUG-BP 1 reproduce splicing mis-regulation observed in myotonic dystrophy. Hum Mol Genet 2005; 14:1539–47.PubMedCrossRefGoogle Scholar
  117. 117.
    Ladd AN, Taffet G, Hartley C et al. Cardiac tissue-specific repression of CELF activity disrupts alternative splicing and causes cardiomyopathy. Mol Cell Biol 2005; 25:6267–78.PubMedCrossRefGoogle Scholar
  118. 118.
    de Haro M, Al-Ramahi I, De Gouyon B et al. MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. Hum Mol Genet 2006; 15:2138–45.PubMedCrossRefGoogle Scholar
  119. 119.
    Hagerman RJ. Lessons from fragile X regarding neurobiology, autism, and neurodegeneration. J Dev Behav Pediatr 2006; 27:63–74.PubMedCrossRefGoogle Scholar
  120. 120.
    Hagerman RJ, Ono MY, Hagerman PJ. Recent advances in fragile X: a model for autism and neurodegeneration. Curr Opin Psychiatry 2005; 18:490–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Iwahashi CK, Yasui DH, An H-J et al. Protein composition of the intranuclear inclusions of FXTAS. Brain 2006; 129:256–71.PubMedCrossRefGoogle Scholar
  122. 122.
    Hashem V, Galloway JN, Mori M et al. Ectopic expression of CGG containing mRNA is neurotoxic in mammals. Hum Mol Genet 2009; 18:2443–51.PubMedCrossRefGoogle Scholar
  123. 123.
    Day JW, Schut LJ, Moseley ML et al. Spinocerebellar ataxia type 8: Clinical features in a large family. Neurology 2000; 55:649–57.PubMedCrossRefGoogle Scholar
  124. 124.
    Gupta A, Jankovic J. Spinocerebellar ataxia 8: variable phenotype and unique pathogenesis. Parkinsonism Relat Disord 2009; 15:621–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Nemes JP, Benzow KA, Moseley ML et al. The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum Mol Genet 2000; 9:1543–51.PubMedCrossRefGoogle Scholar
  126. 126.
    Aromolaran KA, Benzow KA, Cribbs LL et al. T-type current modulation by the actin-binding protein Kelch-like 1 (KLHL1). Am J Physiol Cell Physiol 2010; 298(6):C1353–62.PubMedCrossRefGoogle Scholar
  127. 127.
    Chen WL, Lin JW, Huang HJ et al. SCA8 mRNA expression suggests an antisense regulation of KLHL1 and correlates to SCA8 pathology. Brain Res 2008; 1233:176–84.PubMedCrossRefGoogle Scholar
  128. 128.
    He Y, Zu T, Benzow KA et al. Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits. J Neurosci 2006; 26:9975–82.PubMedCrossRefGoogle Scholar
  129. 129.
    Moseley ML, Zu T, Ikeda Y et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 2006; 38:758–69.PubMedCrossRefGoogle Scholar
  130. 130.
    Mutsuddi M, Marshall CM, Benzow KA et al. The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila. Curr Biol 2004; 14:302–8;.PubMedGoogle Scholar
  131. 131.
    März P, Probst A, Lang S et al. Ataxin-10, the spinocerebellar ataxia type 10 neurodegenerative disorder protein, is essential for survival of cerebellar neurons. J Biol Chem 2004; 279:35542-50.PubMedCrossRefGoogle Scholar
  132. 132.
    Lin X, Ashizawa T. Recent progress in spinocerebellar ataxiatypelO(SCAlO). Cerebellum 2005; 4:37–42.PubMedCrossRefGoogle Scholar
  133. 133.
    Handa V, Yeh HJ, McPhie P, Usdin K. The AUUCU repeats responsible for spinocerebellar ataxia type 10 form unusual RNA hairpins. J Biol Chem 2005; 280:29340–5.PubMedCrossRefGoogle Scholar
  134. 134.
    Keren B, Jacquette A, Depienne C et al. Evidence against haploinsuffiency of human ataxin 10 as a cause of spinocerebellar ataxia type 10. Neurogenetics 2010; 11:273;.PubMedCrossRefGoogle Scholar
  135. 135.
    Petersen P, Chou DM, You Z et al. Protein phosphatase 2A antagonizes ATM and ATR in a Cdk2-and Cdc7-independent DNA damage checkpoint. Mol Cell Biol 2006; 26:1997–2011.PubMedCrossRefGoogle Scholar
  136. 136.
    Dagda RK, Merrill RA, Cribbs JT et al. The spinocerebellar ataxia 12 gene product and protein phosphatase 2A regulatory subunit Bbeta2 antagonizes neuronal survival by promoting mitochondrial fission. J Biol Chem 2008; 283: 36241–36248.PubMedCrossRefGoogle Scholar
  137. 137.
    Holmes SE, Hearn EOr, Ross CA, Margolis RL. SCA12: an unusual mutation leads to an unusual spinocerebellar ataxia. Brain Res Bull 2001; 56:397–403.PubMedCrossRefGoogle Scholar
  138. 138.
    Holmes SE, O’Hearn E, Rosenblatt A et al. A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet 2001; 29:377–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Margolis RL, O’Hearn E, Rosenblatt A et al. A disorder similar to Huntington’s disease is associated with a novel CAG repeat expansion. Ann Neurol 2001; 50:373–80.Google Scholar
  140. 140.
    Wilburn B, Rudnicki DD, Zhao J et al. An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington’s disease-like 2 mice. Neuron 2011; 70:427–440.PubMedCrossRefGoogle Scholar
  141. 141.
    Rudnicki DD, Holmes SE, Lin MW et al. Huntington’s disease-like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol 2007; 61:272–82.PubMedCrossRefGoogle Scholar
  142. 142.
    Sato N, Amino T, Kobayashi K et al. Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 2009; 85:544–57.PubMedCrossRefGoogle Scholar
  143. 143.
    Stevanin G, Fujigasaki H, Lebre A-S et al. Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 2003; 126:1599–603.PubMedCrossRefGoogle Scholar
  144. 144.
    Marsh JL, Walker H, Theisen H et al. Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum Mol Genet 2000; 9:13–25.PubMedCrossRefGoogle Scholar
  145. 145.
    Raspe M, Gillis J, Krol H et al. Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity. J Cell Sci 2009; 122:3262–71.PubMedCrossRefGoogle Scholar
  146. 146.
    Nakayama H, Hamada M, Fujikake N et al. ER stress is the initial response to polyglutamine toxicity in PC12 cells. Biochem Biophys Res Commun 2008; 377:550–5.PubMedCrossRefGoogle Scholar
  147. 147.
    Wellington CL, Ellerby LM, Hackam AS et al. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem 1998; 273:9158–67.PubMedCrossRefGoogle Scholar
  148. 148.
    Sobczak K, de Mezer M, Michlewski G et al. RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res 2003; 31:5469–82.PubMedCrossRefGoogle Scholar
  149. 149.
    Amrane S, Mergny JL. Length and pH-dependent energetics of (CCG)n and (CGG)n trinucleotide repeats. Biochimie 2006; 88:1125–34.PubMedCrossRefGoogle Scholar
  150. 150.
    Zumwalt M, Ludwig A, Hagerman PJ, Dieckmann T. Secondary structure and dynamics of the r(CGG) repeat in the mRNA of the fragile X mental retardation 1 (FMR1) gene. RNA Biol 2007; 4:93–100.PubMedCrossRefGoogle Scholar
  151. 151.
    Yuan Y, Compton SA, Sobczak K et al. Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res 2007; 35:5474–86.PubMedCrossRefGoogle Scholar
  152. 152.
    Li LB, Yu Z, Teng X, Bonini NM. RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 2008; 453:1107–11.PubMedCrossRefGoogle Scholar
  153. 153.
    Zu T, Gibbens B, Doty NS et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci USA 2011; 108:260–265.PubMedCrossRefGoogle Scholar
  154. 154.
    Batra R, Charizanis K, Swanson MS. Partners in crime: bidirectional transcription in unstable microsatellite disease. Hum Mol Genet 2010; 19:R77–82.PubMedCrossRefGoogle Scholar
  155. 155.
    Cho DH, Thienes CP, Mahoney SE et al. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell 2005; 20:483–9.PubMedCrossRefGoogle Scholar
  156. 156.
    Ladd PD, Smith LE, Rabaia NA et al. An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Hum Mol Genet 2007; 16:3174–87.PubMedCrossRefGoogle Scholar
  157. 157.
    Lavorgna G, Dahary D, Lehner B et al. In search of antisense. Trends Biochem Sci 2004; 29:88–94.PubMedCrossRefGoogle Scholar
  158. 158.
    Lapidot M, Pilpel Y. Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep 2006; 7:1216–22.PubMedCrossRefGoogle Scholar
  159. 159.
    Morris KV, Santoso S, Turner AM et al. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet 2008; 4: el000258.CrossRefGoogle Scholar
  160. 160.
    Nakamori M, Pearson CE, Thornton CA. Bidirectional transcription stimulates expansion and contraction of expanded (CTG)*(CAG) repeats. Hum Mol Genet 2011; 20:580–8.PubMedCrossRefGoogle Scholar
  161. 161.
    Lawlor KT, O’Keefe LV, Samaraweera SE et al. Double-stranded RNA is pathogenic in Drosophilamodels of expanded repeat neurodegenerative diseases. Hum Mol Genet 2011; 20:3757–3768.PubMedCrossRefGoogle Scholar
  162. 162.
    van Eyk CL, McLeod CJ, O’Keefe LV et al. Comparative toxicity of polyglutamine, polyalanine and polyleucine tracts in Drosophila models of expanded repeat disease. Hum Mol Genet 2011; 21: Epub ahead of print.Google Scholar
  163. 163.
    van Eyk CL, O’Keefe LV, Lawlor KT et al. Perturbation of the Akt/Gsk3-beta signalling pathway is common to Drosophila expressing expanded untranslated CAG, CUG and AUUCU repeat RNAs. Hum Mol Genet 2011; 20:2783–2794.PubMedCrossRefGoogle Scholar
  164. 164.
    Li LB, Yu Z, Teng X et al. RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 2008; 453:1107–1111.PubMedCrossRefGoogle Scholar
  165. 165.
    Yu Z, Teng X, Bonini NM. Triplet repeat-derived siRNAs enhance RNA-mediated toxicity in a Drosophila model for myotonic dystrophy. PLoS Genet 2011; 7: e 1001340.Google Scholar
  166. 166.
    van Eyk CL. Investigation of RNA-mediated pathogenic pathways in a Drosophila model of expanded repeat disease. PhD Thesis, Discipline of Genetics, University of Adelaide, Adelaide, Australia, 2010.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Discipline of Genetics, School of Molecular and Biomedical SciencesThe University of AdelaideAdelaideAustralia

Personalised recommendations