Advertisement

TRIM Involvement in Transcriptional Regulation

  • Florence Cammas
  • Konstantin Khetchoumian
  • Pierre Chambon
  • Régine Losson
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 770)

Abstract

Members of the tripartite motif (TRIM) protein family are found in all multicellular eukaryotes and function in a wide range of cellular processes such as cell cycle regulation, differentiation, development, oncogenesis and viral response. Over the past few years, several TRIM proteins have been reported to control gene expression through regulation of the transcriptional activity of numerous sequence-specific transcription factors. These proteins include the transcriptional intermediary factor 1 (TIF1) regulators, the promyelocytic leukemia tumor suppressor PML and the RET finger protein (RFP). In this chapter, we will consider the molecular interactions made by these TRIM proteins and will attempt to clarify some of the molecular mechanisms underlying their regulatory effect on transcription.

Keywords

Promyelocytic Leukemia Heterochromatin Protein Coiled Coil Domain Nuclear Body Stem Cell Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007; 128:707–719.CrossRefPubMedGoogle Scholar
  2. 2.
    Berger SL. The complex language of chromatin regulation during transcription. Nature 2007; 447:407–412.PubMedCrossRefGoogle Scholar
  3. 3.
    Beckstead R, Ortiz JA, Sanchez C et al. Bonus, a Drosophila homolog of TIF1 proteins, interacts with nuclear receptors and can inhibit βFTZ-F1-dependent transcription. Mol Cell 2001; 7:753–765.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kiefer JC, Smith PA, Mango SE. PHA-4/FoxA cooperates with TAM-I/TRIM to regulate cell fate restriction in the C. elegans foregut. Dev Biol 2007; 303:611–624.PubMedCrossRefGoogle Scholar
  5. 5.
    Le Douarin B, Zechel C, Gamier JM et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J 1995; 14:2020–2033.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Friedman JR, Fredericks WJ, Jensen DE et al. J. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 1996; 10:2067–2078.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhong S, Salomoni P, Pandolfi PP. The transcriptional control of PML and the nuclear body. Nat Cell Biol 2000; 2:85–89.CrossRefGoogle Scholar
  8. 8.
    Le Douarin B, Nielsen AL, Garnier JM et al. A possible involvement of TIF1α and TIF1β in the epigenetic control of transcription by nuclear receptors. EMBO J 1996; 15:6701–6715.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Nielsen AL, Ortiz JA, You J et al. Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J 1999; 18:6385–6395.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Schultz DC, Friedman JR, Rauscher III FJ. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 2001; 15:428–443.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Schultz DC, Ayyanathan K, Negorev D et al. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 2002; 16:919–932.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Khetchoumian K, Teletin M, Mark M et al. TIF1δ, a novel HP1-interacting member of the transcriptional intermediary factor 1 (TIF1) family expressed by elongating spermatids. J Biol Chem 2004; 279: 48329–48341.PubMedCrossRefGoogle Scholar
  13. 13.
    Wu WS, Vallian S, Seto E et al. The growth suppressor pml represses transcription by functionally and physically interacting with histone deacetylases. Mol Cell Biol 2001; 21:2259–2268.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Shimono Y, Murakami H, Hasegawa Y et al. RET finger protein is a transcriptional repressor and interacts with enhancer of polycomb that has dual transcriptional functions. J Biol Chem 2000; 275:39411–39419.PubMedCrossRefGoogle Scholar
  15. 15.
    Yan K, Dollé P, Mark M et al. Molecular cloning, genomic structure and expression analysis of the mouse transcriptional intermediary factor 1 gamma gene. Gene 2004; 334:3–13.PubMedCrossRefGoogle Scholar
  16. 16.
    Venturini L, You J, Stadler M et al. TIF1γ, a novel member of the transcriptional intermediary factor 1 family. Oncogene 1999; 18:1209–1217.PubMedCrossRefGoogle Scholar
  17. 17.
    Klugbauer S, Rabes HM. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 1999; 18:4388–4393.PubMedCrossRefGoogle Scholar
  18. 18.
    Khetchoumian K, Teletin M, Tisserand J et al. Loss of Trim24 (Tif1α) gene function confers oncogenic activity to retinoic acid receptor alpha. Nat Genet 2007; 39:1500–1506.PubMedCrossRefGoogle Scholar
  19. 19.
    Ignat M, Teletin M, Tisserand J et al. Arterial calcifications and increased expression of vitamin D receptor targets in mice lacking TIF1α. Proc Natl Acad Sci USA 2008; 105:2598–2603.PubMedCrossRefGoogle Scholar
  20. 20.
    Cammas F, Mark M, Dolle P et al. Mice lacking the transcriptional corepressor TIF1 β are defective in early postimplantation development. Development 2000; 127:2955–2963.PubMedGoogle Scholar
  21. 21.
    Weber P, Cammas F, Gerard C et al. Germ cell expression of the transcriptional corepressor TIF1β is required for the maintenance of spermatogenesis in the mouse. Development 2002; 129:2329–2337.PubMedGoogle Scholar
  22. 22.
    He W, Dorn DC, Erdjument-Bromage H et al. Hematopoiesis controlled by distinct TIF1γ and Smad4 branches of the TGFβ pathway. Cell 2006; 125:929–941.PubMedCrossRefGoogle Scholar
  23. 23.
    Dupont S, Zacchigna L, Cordenonsi M et al. Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 2005; 121:87–99.CrossRefPubMedGoogle Scholar
  24. 24.
    Ransom DG, Bahary N, Niss K et al. The zebrafish moonshine gene encodes transcriptional intermediary factor 1 gamma, an essential regulator of hematopoiesis. PLoS Biol 2004; 2:E237.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Peng H, Begg GE, Schultz DC et al. Reconstitution of the KRAB-KAP1 repressor complex: a model system for defining the molecular anatomy of RING-Bbox-coiled-coil domain-mediated protein—protein interactions. J Mol Biol 2000; 295:1139–1162.PubMedCrossRefGoogle Scholar
  26. 26.
    Peng H, Feldman I, Rauscher FJ 3rd. Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: a potential mechanism for regulating the switch between coactivation and corepression. J Mol Biol 2002; 320:629–644.PubMedCrossRefGoogle Scholar
  27. 27.
    Mellor J. It takes a PHD to read the histone code. Cell 2006; 126:22–24.PubMedCrossRefGoogle Scholar
  28. 28.
    Mujtaba S, Zeng L, Zhou MM. Structure and acetyl-lysine recognition of the bromodomain. Oncogene 2007; 26:5521–5527.CrossRefPubMedGoogle Scholar
  29. 29.
    Fraser RA, Heard DJ, Adam S et al. The putative cofactor TIF1α is aprotein kinase that is hyperphosphorylated upon interaction with liganded nuclear receptors. J Biol Chem 1998; 27:16199–16204.CrossRefGoogle Scholar
  30. 30.
    Underhill C, Qutob MS, Yee SP et al. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 2000; 275:40463–40470.PubMedCrossRefGoogle Scholar
  31. 31.
    Hediger F, Gasser SM. Heterochromatin protein 1: don’t judge the book by its cover! Curr Opin Genet Dev 2006; 16:143–150.PubMedCrossRefGoogle Scholar
  32. 32.
    Kwon SH, Workman JL. The heterochromatin protein 1 (HP1) family: put away a bias toward HP1. Mol Cells 2008; 26:217–227.PubMedGoogle Scholar
  33. 33.
    Ryan RF, Schultz DC, Ayyanathan K et al. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol 1999; 19:4366–4378.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mangelsdorf DJ, Thummel C, Beato M et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83:835–839.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lonard DM, O’Malley BW. Nuclear receptor coregulators: judges, juries and executioners of cellular regulation. Mol Cell 2007; 27:691–700.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Zhong S, Delva L, Rachez C et al. A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins. Nat Genet 1999; 23:287–295.PubMedCrossRefGoogle Scholar
  37. 37.
    Teyssier C, Ou CY, Khetchoumian K et al. Transcriptional intermediary factor 1 α mediates physical interaction and functional synergy between the coactivator-associated arginine methyltransferase 1 and glucocorticoid receptor-interacting protein 1 nuclear receptor coactivators. Mol Endocrinol 2006; 20:1276–1286.PubMedCrossRefGoogle Scholar
  38. 38.
    Khetchoumian K, Teletin M, Tisserand J et al. Trim24 (Tif1α): an essential ‘brake’ for retinoic acid-induced transcription to prevent liver cancer. Cell Cycle 2008; 7:3647–3652.PubMedCrossRefGoogle Scholar
  39. 39.
    Huntley S, Baggott DM, Hamilton AT et al. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res 2006; 1:669–677.CrossRefGoogle Scholar
  40. 40.
    Abrink M, Ortiz JA, Mark C et al. Conserved interaction between distinct Krüppel-associated box domains and the transcriptional intermediary factor 1 β. Proc Natl Acad Sci USA 2001; 98:1422–1426.PubMedGoogle Scholar
  41. 41.
    Ivanov AV, Peng H, Yurchenko V et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell 2007; 28:823–837.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ayyanathan K, Lechner MS, Bell P et al. Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev 2003; 17:1855–1869.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Sripathy SP, Stevens J, Schultz DC. The KAP 1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc fingerprotein-mediated transcriptional repression. Mol Cell Biol 2006; 26:8623–8638.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Riclet R, Chendeb M, Vonesch JL et al. Disruption of the interaction between transcriptional intermediary factor 1 β and heterochromatin protein 1 leads to a switch from DNA hyper to hypomethylation and H3K9 to H3K27 trimethylation on the MEST promoter correlating with gene reactivation. Mol Biol Cell 2009; 20:296–305.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Cammas F, Oulad-Abdelghani M, Vonesch JL et al. Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction. J Cell Sci 2002; 115:3439–3448.PubMedGoogle Scholar
  46. 46.
    Cammas F, Herzog M, Lerouge T et al. Association of the transcriptional corepressor TIF1β with heterochromatin protein 1 (HP1): an essential role for progression through differentiation. Genes Dev 2004; 18:2147–2160.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell 2007; 131:46–57.PubMedCrossRefGoogle Scholar
  48. 48.
    Wolf D, Cammas F, Losson R et al. Primer binding site-dependent restriction of murine leukemia virus requires HP1 binding by TRIM28. J Virol 2008; 82:4675–4679.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    O’Geen H, Squazzo SL, Lyengar S et al. Genome-wide analysis of KAP1 binding suggests autoregulation of KRAB-ZNFs. PloS Genet 2007; 3:e89.CrossRefGoogle Scholar
  50. 50.
    Wang C, Ivanov A, Chen L et al. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J 2005; 24:3279–3290.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wang C, Rauscher FJ, Cress WD et al. Regulation of E2F1 function by the nuclear corepressor KAP1. J Biol Chem 2007; 282:29902–29909.PubMedCrossRefGoogle Scholar
  52. 52.
    Fazzio TG, Huff JT, Panning B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 2008; 134:162–174.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hu G, Kim J, Xu Q et al. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev 2009; 23:837–848.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wang ZG, Delva L, Gaboli M et al. Role of PML in cell growth and retinoic acid pathway. Science 1998; 279:1547–1551.PubMedCrossRefGoogle Scholar
  55. 55.
    Rego EM, Wang ZG, Peruzzi D et al. Role of promyelocytic leukemia (PML) protein in tumor suppression. J Exp Med 2001; 193:521–529.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Jenssen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene 2001; 20:7223–7233.CrossRefGoogle Scholar
  57. 57.
    Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 2007; 8:1006–1016.PubMedCrossRefGoogle Scholar
  58. 58.
    Boisvert FM, Kruhlak MJ, Box AK et al. The transcription coactivator CBP is a dynamic component of the promyelocytic leukemia nuclear body. J Cell Biol 2001; 152:1099–1106.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Seeler JS, Marchio A, Sitterlin D et al. Interaction of SP100 with HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment. Mol Cell Biol 1998; 95:7316–7321.Google Scholar
  60. 60.
    LaMorte V, Dyck JA, Ochs RL et al. Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body. Proc Natl Acad Sci USA 1998; 95:4991–4996.PubMedCrossRefGoogle Scholar
  61. 61.
    Boisvert FM, Hendzel MJ, Bazett-Jones DP. Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 2000; 148:283–292.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wang J, Shiels C, Sasieni P et al. Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 2004; 164:515–526.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ching RW, Dellaire G, Eskiw CH et al. PML bodies: a meeting place for genomic loci. J Cell Sci 2005; 118:847–854.PubMedCrossRefGoogle Scholar
  64. 64.
    Guiochon-Mantel A, Savouret JF, Guignon et al. Effect of PML and PML-RAR on the transactivation properties and subcellular distribution of steroid hormone receptors. Mol Endocrinol 1995; 9:1791–1803.PubMedGoogle Scholar
  65. 65.
    Doucas V, Tini M, Egan DA et al. Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc Natl Acad Sci USA 1999; 96:2627–2632.PubMedCrossRefGoogle Scholar
  66. 66.
    Guo A, Salomoni P, Luo J et al. The function of PML in p53-dependent apoptosis. Nat Cell Biol 2000; 2:730–736.PubMedCrossRefGoogle Scholar
  67. 67.
    Bernassola F, Oberst A, Melino G et al. The promyelocytic leukaemia protein tumour suppressor functions as a transcriptional regulator of p63. Oncogene 2005; 24:6982–6986.PubMedCrossRefGoogle Scholar
  68. 68.
    Bernassola F, Salomoni P, Oberst A et al. Ubiquitin-dependent degradation of p73 is inhibited by PML. J Exp Med 2004; 199:1545–1557.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Pearson M, Carbone R, Sebastiani C et al. PMLregulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 2000; 406:207–210.CrossRefPubMedGoogle Scholar
  70. 70.
    Kurki S, Latonen L, Laiho M. Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J Cell Sci 2003; 116:3917–3925.PubMedCrossRefGoogle Scholar
  71. 71.
    Bernardi R, Scaglioni PP, Bergmann S et al. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nature Cell Biol 2004; 6:665–672.PubMedCrossRefGoogle Scholar
  72. 72.
    Louria-Hayon I, Grossman T, Sionov RV et al. The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 2003; 278:33134–33141.PubMedCrossRefGoogle Scholar
  73. 73.
    Alsheich-Bartok O, Haupt S, Alkalay-Snir I et al. PML enhances the regulation of p53 by CK1 in response to DNA damage. Oncogene 2008; 27:3653–3661.PubMedCrossRefGoogle Scholar
  74. 74.
    Li M, Chen D, Shiloh A et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 2002; 416:648–653.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Vallian S, Gäken JA, Gingold EB et al. Modulation of Fos-mediated AP-1 transcription by the promyelocytic leukemia protein. Oncogene 1998; 16:2843–2853.PubMedCrossRefGoogle Scholar
  76. 76.
    Tsuzuki S, Towatari M, Siato H et al. Potentiation of GATA-2 activity through interactions with the promyelocytic leukemiaprotein (PML) and the t(15; 17)-generated PML-retinoic acid receptor oncoprotein. Mol Cell Biol 2000; 20:6276–6286.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Nguyen LA, Pandolfi PP, Aikawa Y et al. Physical and functional link of the leukemia-associated factors AML1 and PML. Blood 2005; 105:292–300.CrossRefPubMedGoogle Scholar
  78. 78.
    Lin HK, Bergmann S, Pandolfi PP. Cytoplasmic PML function in TGF-β signaling. Nature 2004; 431:205–211.CrossRefPubMedGoogle Scholar
  79. 79.
    Kumar PP, Bischof O, Purbey PP et al. Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nature Cell Biol 2004; 9:45–56.Google Scholar
  80. 80.
    Li H, Leo C, Zhu J et al. Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. Mol Cell Biol 2000; 20:1784–1796.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Buschbeck M, Uribesalgo I, Ledl A et al. PML4 induces differentiation by Myc destabilization. Oncogene 2007; 26:3415–3422.PubMedCrossRefGoogle Scholar
  82. 82.
    Vallian S, Gaken EB, Trayner et al. Transcriptional repression by the promyelocytic leukemia protein, PML. Exp Cell Res 1997; 237:371–382.PubMedCrossRefGoogle Scholar
  83. 83.
    Khan MM, Nomura T, Kim H et al. Role of PML and PML-RARα in Mad-mediated transcriptional repression. Mol Cell 2001; 7:1233–1243.PubMedCrossRefGoogle Scholar
  84. 84.
    Vallian S, Chin KV, Chang KS. The promyelocytic leukemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter. Mol Cell Biol 1998; 18:7147–7156.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wu WS, Xu ZX, Ran R et al. Promyelocytic leukemia protein PML inhibits Nur77-mediated transcription through specific functional interactions. Oncogene 2002; 21:3925–3933.PubMedCrossRefGoogle Scholar
  86. 86.
    Wu WS, Xu ZX, Chang KS. The promyelocytic leukemia protein represses A20-mediated transcription. J Biol Chem 2002; 277:31734–31739.PubMedCrossRefGoogle Scholar
  87. 87.
    Choi YH, Bernardi R, Pandolfi PP et al. The promyelocytic leukemia protein functions as a negative regulator of IFN-γ signaling. Proc Natl Acad Sci USA 2006; 103:18715–18720.PubMedCrossRefGoogle Scholar
  88. 88.
    Alcaly M, Tomassoni L, Colombo E et al. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol Cell Biol 1998; 18:1084–1093.CrossRefGoogle Scholar
  89. 89.
    Takahashi M, Cooper GM. Ret transforming gene encodes afusion protein homologous to tyrosine kinases. Mol Cell Biol 1987; 7:1378–1385.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Tezel G, Nagasaka T, Iwahashi N et al. Different nuclear/cytoplasmic distributions of RET finger protein in different cell types. Path Int 1999; 49:881–886.CrossRefGoogle Scholar
  91. 91.
    Cao T, Duprez E, Borden KLB et al. Ret finger protein is a normal component of PML nuclear bodies and interacts directly with PML. J Cell Sci 1998; 111:1319–1329.PubMedGoogle Scholar
  92. 92.
    Morris-Desbois C, Bochard V, Reynaud C et al. Interaction between the Ret finger protein and the Int-6 gene product and colocalisation into nuclear bodies. J Cell Sci 1999; 112:3331–3342.PubMedGoogle Scholar
  93. 93.
    Dho SH, Kwon KS. The Ret finger protein induces apoptosis via its RING finger-B box-coiled-coil motif. J Biol Chem 2003; 278:31902–31908.PubMedCrossRefGoogle Scholar
  94. 94.
    Matsuura T, Shimono Y, Kawai K et al. PIAS proteins are involved in the SUMO-1 modification, intracellular translocation and transcriptional repressive activity of RET finger protein. Exp Cell Res 2005; 308:65–77.PubMedCrossRefGoogle Scholar
  95. 95.
    Fukushige S, Kondo E, Gu Z et al. RET finger protein enhances MBD2 and MBD4-dependent transcriptional repression. Biochem Biophys Res Commun 2006; 351:85–92.PubMedCrossRefGoogle Scholar
  96. 96.
    Shimono Y, Murakami H, Kawai K et al. Mi-2β associates with BRG1 and RET finger protein at the distinct regions with transcriptional activating and repressing activities. J Biol Chem 2003; 278:51638–51645.PubMedCrossRefGoogle Scholar
  97. 97.
    Bloor AJ, Kotsopoulou E, Hayward P et al. RFP represses transcriptional activation by bHLH transcription factors. Oncogene 2005; 24:6729–6736.PubMedCrossRefGoogle Scholar
  98. 98.
    Krützfeldt M, Ellis M, Weekes DB et al. Selective ablation of Retinoblastoma protein function by the RET finger protein. Mol Cell 2005; 18:213–224.PubMedCrossRefGoogle Scholar
  99. 99.
    Townson SM, Kang K, Lee AV et al. Novel role of the RET finger protein in estrogen receptor-mediated transcription in MCF-7 cells. Biochem Biophys Res Commun 2006; 349:540–548.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Shimono K, Shimono Y, Shimokata K et al. Microspherule protein 1, Mi-2β and RET finger protein associate in the nucleolus and up-regulate ribosomal gene transcription. J Biol Chem 2005; 280:39436–39447.PubMedCrossRefGoogle Scholar
  101. 101.
    Patarca R, Gordon JF, Schwartz J et al. RPT-1, an intracellular protein from helper/inducer T-cells that regulates gene expression of interleukin 2 receptor and human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1988; 85:2733–2737.PubMedCrossRefGoogle Scholar
  102. 102.
    Gupta P, Gurudutta GU, Verma YK et al. PU.1: an ETS family transcription factor that regulates leukemogenesis besides normal hematopoiesis. Stem Cells Dev 2006; 15:609–617.PubMedCrossRefGoogle Scholar
  103. 103.
    Hirose S, Nishizumi H, Sakano H. Pub, a novel PU. 1 binding protein, regulates the transcriptional activity of PU.1. Biochem Biophys Res Commun 2003; 311:351–360.PubMedCrossRefGoogle Scholar
  104. 104.
    Wang Y, Li Y, Qi X et al. TRIM45, a novel human RBCC/TRIM protein, inhibits transcriptional activities of E1K-1 and AP-1. Biochem Biophys Res Commun 2004; 323:9–16.PubMedCrossRefGoogle Scholar
  105. 105.
    Bellini M, Lacroix JC, Gall JG. A putative zinc-binding protein on lampbrush chromosome loops. EMBO J 1993; 12:107–114.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Beenders B, Jones PL, Bellini M. The tripartite motif of nuclear factor 7 is required for its association with transcriptional units. Mol Cell Biol 2007; 27:2615–2624.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Florence Cammas
    • 1
  • Konstantin Khetchoumian
    • 1
  • Pierre Chambon
    • 1
  • Régine Losson
    • 1
  1. 1.Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et CellulaireCNRS/INSERM/ULP/Collège de FranceIllkirchFrance

Personalised recommendations