Statistical Geometry and Topology of the Human Placenta

  • Rak-Kyeong Seong
  • Pascal Getreuer
  • Yingying Li
  • Theresa Girardi
  • Carolyn M. Salafia
  • Dimitri D. Vvedensky

Abstract

We present a method of characterising tree networks based on a structural triangulation of those networks. Each component triangle is assigned a generation number which reflects the distance of that component from the origin of the network. By interpreting the generation number as an energy level, we can associate a partition function with a tree network which, in terms of the usual statistical thermodynamic interpretation, enables the determination of the internal energy and entropy of the triangulation. These thermodynamic functions depend on a parameter analogous to an inverse temperature that assigns weights to different parts of the network based on the generation numbers of the triangular elements. The systematic variation of these weights permits an examination of the development of the network, from the initial stages at low temperatures, where lower generation numbers have the greatest weight, to the complete network at high temperature, where all generation numbers have similar weights. After working through several examples to illustrate our methodology, we analyze the arterial and venous vasculature of the chorionic plate of 13 human placentas. We attempt to examine the extent to which the entropy function is correlated to the infant birthweight with the sample set. A correlation is postulated as a key factor in determining lifelong health.

References

  1. 1.
    Albert, R. and Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74 (2002), 47–97. MATHCrossRefGoogle Scholar
  2. 2.
    Barker, D. J. P. Fetal origins of coronary heart disease. BMJ 311 (1995), 171–174. CrossRefGoogle Scholar
  3. 3.
    Bergman D. L. and Ullberg, U. Scaling properties of the placenta’s arterial tree. J. Theor. Biol. 193 (1998), 731–738. CrossRefGoogle Scholar
  4. 4.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and Hwang, D. U. Complex networks: structure and dynamics. Phys. Rep. 424 (2006), 175–308. MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cayley, A. On the theory of analytical forms called trees. Philos. Mag. 13 (1857), 172–176. Google Scholar
  6. 6.
    Corson, F. Fluctuations and redundancy in optimal transport networks. Phys. Rev. Lett. 104 (2010), 048703. CrossRefGoogle Scholar
  7. 7.
    Cross, S. C. Fractals in pathology. J. Pathol. 182 (1997), 1–8. CrossRefGoogle Scholar
  8. 8.
    Dodds, P. S. Optimal form of branching supply and collection networks. Phys. Rev. Lett. 104 (2010), 048702. CrossRefGoogle Scholar
  9. 9.
    Dorogovtsev, S. N., Goltsev, A. and Mendes, J. F. F. Critical phenomena in complex networks. Rev. Mod. Phys. 80 (2008), 1275–1335. CrossRefGoogle Scholar
  10. 10.
    Erdös, P. and Rényi, A. On random graphs. I. Publ. Math. 6 (1959), 290–297. MATHGoogle Scholar
  11. 11.
    Erdös, P. and Rényi, A. The evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17–61. MATHGoogle Scholar
  12. 12.
    Euler L. Solutio problematis ad geometriam situs pertinentis. Comment. Acad. Sci. Imp. Petrop. 8 (1736), 128–140. [English translation: Newman, J. Leohnard Euler and the Königsberg bridges. Sci. Am. 189(1) (1953), 66–70] Google Scholar
  13. 13.
    Gilbert, E. N. Random graphs. Ann. Math. Stat. 30 (1959), 1141–1144. MATHCrossRefGoogle Scholar
  14. 14.
    Gill, J. S., Salafia, C. M., Grebenkov, D. and Vvedensky, D. D. Modeling oxygen transport in human placental terminal villi. J. Theor. Biol. 291 (2011), 33–41. CrossRefGoogle Scholar
  15. 15.
    Gill, J. S., Woods, M. P., Salafia, C. M. and Vvedensky, D. D. Probability distributions for measures of placental shape and morphology (unpublished). arXiv:1109.2057.
  16. 16.
    Katifori, E., Szöllősi, G. J. and Magnasco, M. O. Damage and fluctuations induce loops in optimal transport networks. Phys. Rev. Lett. 104 (2010), 048704. CrossRefGoogle Scholar
  17. 17.
    Kirchhoff, G. Über die Auflösung der Gleichungen, auf Welche man bei der Untersuchung der Linearen Verteilung Galvanischer Ströme Geführt Wird. Poggendorf Ann. Phys. Chem. 72 (1847), 497–508. [English translation: On the solution of the equations obtained from the investigation of the linear distribution of Galvanic currents. IRE Trans. Circuit Theory 5 (1958), 4–8.] Google Scholar
  18. 18.
    McCulloh, K. A., Sperry, J. S. and Alder, F. R. Water transport in plants obeys Murray’s law. Nature 421 (2003), 939–942. CrossRefGoogle Scholar
  19. 19.
    Lorthois, S. and Cassot, F. Fractal analysis of vascular networks: Insights from mortphogenesis. J. Theor. Biol. 262 (2010), 614–633. CrossRefGoogle Scholar
  20. 20.
    Murray, C. D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA 12 (1926), 207–214. CrossRefGoogle Scholar
  21. 21.
    Nakahara, M. Geometry, Topology and Physics. IOP Publishing, Bristol, 2003. MATHCrossRefGoogle Scholar
  22. 22.
    Newman, M. E. J. The structure and function of complex networks. SIAM Rev. 45 (2003), 167–256. MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Painter, P. R., Edén, P. and Bengtsson, H. U. Pulsatile blood flow, shear force, energy dissipation and Murray’s law. Theor. Biol. Med. Model. 3 (2006), 31. CrossRefGoogle Scholar
  24. 24.
    Roth-Nebelsick, A., Uhl, D., Mosbrugger, V. and Kerp, H. Evolution and function of leaf venation architecture: a review. Ann. Bot. 87 (2001), 553–566. CrossRefGoogle Scholar
  25. 25.
    Runions, A., Fuhrer, M., Lane, B., Federl, P., Rolland-Lagan A.-G. and Prusinkiewicz P. Modeling and visualization of leaf venation patterns. ACM Trans. Graph. 24 (2005), 702–711. CrossRefGoogle Scholar
  26. 26.
    Schwartz, N., Coletta, J., Pessel, C., Feng, R., Timor-Tritsch, I. E., Parry, S. and Salafia, C. M. Novel 3-dimensional placental measurements in early pregnancy as predictors of adverse pregnancy outcomes. J. Ultrasound Med. 29 (2010), 1203–1212. Google Scholar
  27. 27.
    Schwartz, N., Mandel, D., Shlakhter, O., Coletta, J., Pessel, C., Timor-Tritsch I. E. and Salafia, C. M. Placental morphology and chorionic surface vasculature at term are highly correlated with 3-dimensional sonographic measures at 11–14 weeks. J. Ultrasound Med. 30 (2011), 1171–1178. Google Scholar
  28. 28.
    Sherman, T. F. On connecting large vessels to small. The meaning of Murray’s law. J. Gen. Physiol. 78 (1981), 431–453. CrossRefGoogle Scholar
  29. 29.
    Takahashi, T., Nagaoka, T., Yanagida, H., Saitoh, T., Kamiya, A., Hein, T., Kuo, L. and Yoshida, A. A mathematical model for the distribution of hemodynamic parameters in the human retinal microvascular network. J. Biorheol. 23 (2010), 77–86. CrossRefGoogle Scholar
  30. 30.
    Uylings, H. B. M. Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bull. Math. Biol. 399 (1977), 509–519. Google Scholar
  31. 31.
    Vankan, W. J., Huyghe, J. M., Janssen, J. D., Huson, A., Hacking, W. J. G. and Schreiner, W. Finite element analysis of blood flow through biological tissue. Int. J. Eng. Sci. 35 (1997), 375–385. MATHCrossRefGoogle Scholar
  32. 32.
    West, G. B., Brown, J. H. and Enquist, B. J. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science 284 (1999), 1677–1679. MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Xia, Q. The formation of a tree leaf. ESAIM Control Optim. Calc. Var. 13 (2007), 359–377. MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rak-Kyeong Seong
    • 1
  • Pascal Getreuer
    • 2
  • Yingying Li
    • 3
  • Theresa Girardi
    • 3
  • Carolyn M. Salafia
    • 3
  • Dimitri D. Vvedensky
    • 1
  1. 1.The Blackett LaboratoryImperial College LondonLondonUK
  2. 2.Mathematics DepartmentYale UniversityNew HavenUSA
  3. 3.Placental Analytics LLCLarchmontUSA

Personalised recommendations