Some Applications of Commutative Algebra to String Theory

  • Paul S. AspinwallEmail author


String theory was first introduced as a model for strong nuclear interactions, then reinterpreted as a model for quantum gravity, and then all fundamental physics.


Modulus Space Matrix Factorization Toric Variety Closed String Monomial Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank R. Plesser for many useful discussions. This work was partially supported by NSF grant DMS–0905923. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.


  1. 1.
    Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in algebraic geometry. Available at
  2. 2.
    Atiyah, M.: Topological quantum field theories. Inst. Hautes Études Sci. Publ. Math. 68, 175–186 (1989)Google Scholar
  3. 3.
    Lurie, J.: On the classification of topological field theories. In: Current Developments in Mathematics, 2008, pp. 129–280. International Press, Somerville (2009). arXiv:0905.0465.Google Scholar
  4. 4.
    Douglas, M.R., Gross, M. (eds.): Dirichlet branes and mirror symmetry. Clay Mathematical Monographs, vol. 4. American Mathematical Society, New York, Clay Mathematics Institute, Cambridge (2009)Google Scholar
  5. 5.
    Witten, E.: Mirror manifolds and topological field theory. In: Yau, S.-T. (ed.) Essays on Mirror Manifolds. International Press, Somerville (1992). hep-th/9112056Google Scholar
  6. 6.
    Douglas, M.R.: D-Branes, categories and N=1 supersymmetry. J. Math. Phys. 42, 2818–2843 (2001). hep-th/0011017Google Scholar
  7. 7.
    Aspinwall, P.S., Lawrence, A.E.: Derived categories and zero-brane stability. J. High Energy Phys. 08, 004 (2001). hep-th/0104147Google Scholar
  8. 8.
    Aspinwall, P.S.: D-Branes on Calabi–Yau manifolds. In: Maldacena, J.M. (ed.) Progress in String Theory. TASI 2003 Lecture Notes, pp. 1–152. World Scientific, Singapore (2005). hep-th/0403166Google Scholar
  9. 9.
    Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Intersection Floer Theory—Anomaly and Obstruction. (2000).
  10. 10.
    Dijkgraaf, R., Verlinde, H.L., Verlinde, E.P.: Notes on topological string theory and 2-D quantum gravity. In Green, M., et al. (eds.) String Theory and Quantum Gravity: Proceedings. World Scientific, Singapore (1991). Proceedings of Trieste Spring School: String Theory and Quantum Gravity, Trieste, Italy, Apr 23–1 May (1990)Google Scholar
  11. 11.
    Costello, K.: Topological conformal field theories and Calabi–Yau categories. Adv. Math. 210, 165–214 (2007). arXiv:math/0412149Google Scholar
  12. 12.
    Toën, B.: The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167, 615–667 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Oda, T., Park, H.S.: Linear Gale transforms and Gelfand–Kapranov–Zelevinskij decompositions. Tôhoku Math. J. 43, 375–399 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Cox, D.A.: The homogeneous coordinate ring of a toric variety. J. Algebraic Geom. 4, 17–50 (1995). alg-geom/9210008Google Scholar
  15. 15.
    Cox, D.A., Little, J.B., Schenck, H.K.: Toric varities. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2010)Google Scholar
  16. 16.
    Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)Google Scholar
  17. 17.
    Bondal, A., Orlov, D.: Semiorthogonal decomposition for algebraic varieties. alg-geom/9506012Google Scholar
  18. 18.
    Witten, E.: Phases of N = 2 theories in two dimensions. Nucl. Phys. B403, 159–222 (1993). hep-th/9301042Google Scholar
  19. 19.
    Herbst, M., Hori, K., Page, D.: Phases of N = 2 theories in 1 + 1 dimensions with boundary. arXiv:0803.2045Google Scholar
  20. 20.
    Pantev, T., Sharpe, E.: String compactifications on Calabi–Yau stacks. Nucl. Phys. B733, 233–296 (2006). hep-th/0502044Google Scholar
  21. 21.
    Segal, E.: Equivalence between GIT quotients of Landau–Ginzburg B-models. Comm. Math. Phys. 304, 411–432 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Springer, New York (2005)Google Scholar
  23. 23.
    Aspinwall, P.S.: Topological D-branes and commutative algebra. Commun. Num. Theory. Phys. 3, 445–474 (2009). hep-th/0703279Google Scholar
  24. 24.
    Eisenbud, D., Mustaţǎ, M., Stillman, M.: Cohomology on toric varieties and local cohomology with monomial supports. J. Symbolic Comput. 29, 583–600 (2000). arXiv:math/0001159Google Scholar
  25. 25.
    Van den Bergh, M.: Non-commutative crepant resolutions. In: The Legacy of Niels Henrik Abel: The Abel Bicentennial, Oslo 2002, pp. 749–770. Springer, Berlin (2004). arXiv:math/0211064Google Scholar
  26. 26.
    Aspinwall, P.S.: D-Branes on toric Calabi–Yau varieties. arXiv:0806.2612Google Scholar
  27. 27.
    Orlov, D.: Derived categories of coherent sheaves and triangulated categories of singularities. In: Algebra, Arithmetic, and Geometry: in Honor of Yu.I. Manin. Vol. II. Progress in Mathematics, vol. 270. pp. 503–531. Birkhäuser, Boston (2009). math.AG/ 0506347Google Scholar
  28. 28.
    Avramov, L.L., Grayson, D.R.: Resolutions and cohomology over complete intersections. In: Eisenbud, D., et al. (eds.) Computations in Algebraic Geometry with Macaulay 2, Algorithms and Computations in Mathematics, vol. 8, pp. 131–178. Springer, New York (2001)CrossRefGoogle Scholar
  29. 29.
    Gulliksen, T.H.: A change of ring theorem with applications to Poincare series and intersection multiplicity. Math. Scand. 34, 167–183 (1974)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Eisenbud, D.: Homological algebra on a complete intersection, with an application to group representations. Trans. Amer. Math. Soc. 260, 35–64 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Ballard, M., Favero, D., Katzarkov, L.: Variation of geometric invariant theory quotients and derived categories. arXiv:1203.6643Google Scholar
  32. 32.
    Kapustin, A., Li, Y.: D-branes in Landau–Ginzburg models and algebraic geometry. J. High Energy Phys. 12 005 (2003). hep-th/0210296Google Scholar
  33. 33.
    Hori, K., Walcher, J.: D-branes from matrix factorizations. Compt. Rendus Phys. 5, 1061–1070 (2004). hep-th/0409204Google Scholar
  34. 34.
    Ashok, S.K., Dell’Aquila, E., Diaconescu, D.-E., Florea, B.: Obstructed D-branes in Landau–Ginzburg orbifolds. Adv. Theor. Math. Phys. 8, 427–472 (2004). hep-th/0404167Google Scholar
  35. 35.
    Aspinwall, P.S.: The Landau–Ginzburg to Calabi–Yau dictionary for D-branes, J. Math. Phys. 48, 082304 (2007). arXiv:hep-th/0610209Google Scholar
  36. 36.
    Vafa, C., Warner, N.: Catastrophes and the classification of conformal theories. Phys. Lett. 218B, 51–58 (1989)MathSciNetGoogle Scholar
  37. 37.
    Kapustin, A., Rozansky, L.: On the relation between open and closed topological strings. Commun. Math. Phys. 252, 393–414 (2004). arXiv:hep-th/0405232Google Scholar
  38. 38.
    Dyckerhoff, T.: Compact generators in categories of matrix factorizations. Duke Math. J. 159, 223–274 (2011). arXiv:0904.4713Google Scholar
  39. 39.
    Joyce, D.: Lectures on Calabi–Yau and special Lagrangian geometry. In: Global Theory of Minimal Surfaces. Clay Mathematical Proceedings, vol. 2. American Mathematical Society, Providence (2005). math.DG/0108088Google Scholar
  40. 40.
    Douglas, M.R., Fiol, B., Römelsberger, C.: Stability and BPS branes. J. High Energy Phys. 0509, 006 (2005). hep-th/0002037Google Scholar
  41. 41.
    Aspinwall, P.S., Douglas, M.R.: D-brane stability and monodromy. J. High Energy Phys. 05, 031 (2002), hep-th/0110071Google Scholar
  42. 42.
    Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. (2) 166, 317–345 (2007). math.AG/0212237Google Scholar
  43. 43.
    Gel’fand, I.M., Zelevinskiĭ A.V., Kapranov, M.M.: Hypergeometric functions and toral (toric) manifolds. Func. Anal. Appl. 23, 94–106 (1989). (from Russian in Funk. Anal. Pril. 23)Google Scholar
  44. 44.
    Gelfand, I.M., Kapranov, M.M., Zelevinski, A.V.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Basel (1994)zbMATHGoogle Scholar
  45. 45.
    Batyrev, V.V.: Variations of the mixed hodge structure of affine hypersurfaces in algebraic tori. Duke Math. J. 69, 349–409 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Aspinwall, P.S., Greene, B.R., Morrison, D.R.: The monomial-divisor mirror map. Internat. Math. Res. Notices 319–33 (1993). alg-geom/9309007Google Scholar
  47. 47.
    Hosono, S., Lian, B.H., Yau, S.-T.: GKZ-generalized hypergeometric systems in mirror symmetry of Calabi-Yau hypersurfaces. Comm. Math. Phys. 182, 535–577 (1996). alg-geom/ 9511001Google Scholar
  48. 48.
    Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Alg. Geom. 3, 493–535 (1994)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Eisenbud, D.: Commutative algebra with a view towards algebraic geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Mathematics DepartmentDuke UniversityDurhamUSA

Personalised recommendations