Advertisement

Neural Modeling

  • Michael N. Economo
  • Joan J. Martinez
  • John A. WhiteEmail author
Chapter

Abstract

The brain is extraordinarily complex, containing 1011 neurons linked with 1014 connections. We can improve our understanding of individual neurons and neuronal networks by describing their behavior in mathematical and computational models. This chapter provides an introduction to neural modeling, laying the foundation for several basic models and surveying key topics. After some discussion on the motivations of modelers and the uses of neural models, we explore the properties of electrically excitable membranes. We describe in some detail the Hodgkin–Huxley model, the first neural model to describe biophysically the behavior of biological membranes. We explore how this model can be extended to describe a variety of excitable membrane behaviors, including axonal propagation, dendritic processing, and synaptic communication. This chapter also covers mathematical models that replicate basic neural behaviors through more abstract mechanisms. We briefly explore efforts to extend single-neuron models to the network level and provide several examples of insights gained through this process. Finally, we list common resources, including modeling environments and repositories, that provide the guidance and parameter sets necessary to begin building neural models.

Keywords

Deep Brain Stimulation Synaptic Conductance Squid Giant Axon Passive Membrane Spike Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Weiss TF (1996) Cellular biophysics, vol 2, Electrical properties. MIT Press, Cambridge, MAGoogle Scholar
  2. 2.
    Weiss TF (1996) Cellular biophysics, vol 1, Transport. MIT Press, Cambridge, MAGoogle Scholar
  3. 3.
    Johnston D, Wu SM-S (1994) Foundations of cellular neurophysiology, 1st edn. MIT Press, Cambridge, MAGoogle Scholar
  4. 4.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544Google Scholar
  5. 5.
    Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: Reiss RF (ed) Neural theory and modeling. Stanford University Press, StanfordGoogle Scholar
  6. 6.
    Rall W (1995) The theoretical foundation of dendritic function: selected papers of Wilfrid Rall with commentaries. MIT Press, Cambridge, MAGoogle Scholar
  7. 7.
    Goldman L, Albus JS (1968) Computation of impulse conduction in myelinated fibers; theoretical basis of the velocity-diameter relation. Biophys J 8(5):596–607CrossRefGoogle Scholar
  8. 8.
    Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MAGoogle Scholar
  9. 9.
    McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318Google Scholar
  10. 10.
    Sherman SM (2001) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24(2):122–126MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fernandez FR, Engbers JDT, Turner RW (2007) Firing dynamics of cerebellar purkinje cells. J Neurophysiol 98(1):278–294CrossRefGoogle Scholar
  12. 12.
    Del Negro CA, Chandler SH (1997) Physiological and theoretical analysis of K+ currents controlling discharge in neonatal rat mesencephalic trigeminal neurons. J Neurophysiol 77(2):537–553Google Scholar
  13. 13.
    Alonso A, Llinás RR (1989) Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342(6246):175–177CrossRefGoogle Scholar
  14. 14.
    Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23(5):216–222CrossRefGoogle Scholar
  15. 15.
    Dickson CT, Magistretti J, Shalinsky MH, Fransén E, Hasselmo ME, Alonso A (2000) Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J Neurophysiol 83(5):2562–2579Google Scholar
  16. 16.
    Aiken SP, Lampe BJ, Murphy PA, Brown BS (1995) Reduction of spike frequency adaptation and blockade of M-current in rat CA1 pyramidal neurones by linopirdine (DuP 996), a neurotransmitter release enhancer. Br J Pharmacol 115(7):1163–1168CrossRefGoogle Scholar
  17. 17.
    Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol 354:319–331Google Scholar
  18. 18.
    Fleidervish IA, Friedman A, Gutnick MJ (1996) Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol 493(Pt 1):83–97Google Scholar
  19. 19.
    Williams SR, Christensen SR, Stuart GJ, Häusser M (2002) Membrane potential bistability is controlled by the hyperpolarization-activated current I(H) in rat cerebellar Purkinje neurons in vitro. J Physiol 539(2):469–483CrossRefGoogle Scholar
  20. 20.
    Guttman R, Lewis S, Rinzel J (1980) Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. J Physiol 305:377–395Google Scholar
  21. 21.
    Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge, MAGoogle Scholar
  22. 22.
    Rall W (1957) Membrane time constant of motoneurons. Science 126(3271):454CrossRefGoogle Scholar
  23. 23.
    Stuart G, Spruston N, Hausser M (2007) Dendrites, 2nd edn. Oxford University Press, OxfordCrossRefGoogle Scholar
  24. 24.
    Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol 505(Pt 3):605–616CrossRefGoogle Scholar
  25. 25.
    Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367(6458):69–72CrossRefGoogle Scholar
  26. 26.
    Johnston D, Narayanan R (2008) Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci 31(6):309–316CrossRefGoogle Scholar
  27. 27.
    Schiller J, Major G, Koester HJ, Schiller Y (2000) NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404(6775):285–289CrossRefGoogle Scholar
  28. 28.
    Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9:620–635Google Scholar
  29. 29.
    Izhikevich EM (2001) Resonate-and-fire neurons. Neural Netw 14(6–7):883–894CrossRefGoogle Scholar
  30. 30.
    Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge, MAzbMATHGoogle Scholar
  31. 31.
    Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070CrossRefGoogle Scholar
  32. 32.
    Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87(2):1129–1131Google Scholar
  33. 33.
    Marder E, Goaillard J-M (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7(7):563–574CrossRefGoogle Scholar
  34. 34.
    Swensen AM, Bean BP (2005) Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. J Neurosci 25(14):3509–3520CrossRefGoogle Scholar
  35. 35.
    Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61(2):331–349Google Scholar
  36. 36.
    Compte A, Brunel N, Goldman-Rakic PS, Wang XJ (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10(9):910–923CrossRefGoogle Scholar
  37. 37.
    Griffith JS (1963) On the stability of brain-like structures. Biophys J 3:299–308MathSciNetCrossRefGoogle Scholar
  38. 38.
    Abeles M (1982) Local cortical circuits: an electrophysiological study. Springer, BerlinCrossRefGoogle Scholar
  39. 39.
    Traub R, Wong R (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216(4547):745–747CrossRefGoogle Scholar
  40. 40.
    McIntyre CC, Grill WM, Sherman DL, Thakor NV (2004) Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 91(4):1457–1469CrossRefGoogle Scholar
  41. 41.
    Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation. NeuroImage 34(2):661–670CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michael N. Economo
    • 1
    • 2
  • Joan J. Martinez
    • 2
    • 3
  • John A. White
    • 2
    • 3
    Email author
  1. 1.Department of Biomedical EngineeringBoston UniversityBostonUSA
  2. 2.Brain InstituteUniversity of UtahSalt Lake CityUSA
  3. 3.Department of BioengineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations