The Physiological Ecology of Mycoheterotrophy

  • Nicole A. Hynson
  • Thomas P. Madsen
  • Marc-André Selosse
  • Iris K. U. Adam
  • Yuki Ogura-Tsujita
  • Melanie Roy
  • Gerhard Gebauer
Chapter

Abstract

The purpose of this chapter is to provide a practical and theoretical framework for the study of the ecophysiology of mycoheterotrophic plants. We accomplish this by providing a comparative overview of our current knowledge on carbon and nitrogen isotope natural abundance in partially and fully mycoheterotrophic plants associated with ectomycorrhizal, wood- and litter-decomposer saprotrophic, and arbuscular mycorrhizal fungi, and discuss their ecophysiological implications. We present a meta-analysis of all stable carbon and nitrogen isotope values from the majority of species of partially and fully mycoheterotrophic plants investigated thus far. We summarize our current understanding of the ecophysiology of fully mycoheterotrophic plants in the families Orchidaceae and Ericaceae as well as nonvascular plants, and species from the tropics that associate with arbuscular mycorrhizal fungi. We also review the occurrence of initial mycoheterotrophy among orchids and ericaceous plants that are autotrophic upon reaching adulthood. We highlight current studies of cryptic or partial mycoheterotrophy in green plants that appear to be fully autotrophic, but meet some portion of their C demands via fungi in a mixotrophic nutrition. Furthermore, we explore the utility of ecophysiological methods such as radioactive and stable isotope probing, measuring plant assimilatory and respiratory responses to environmental gradients such as light availability, and natural abundance stable isotope analysis for future studies of mycoheterotrophic food webs. Finally, methodological limitations and considerations for the study of physiological ecology of mycoheterotrophy are also outlined in this chapter.

References

  1. Abadie J-C, Püttsepp Ü, Gebauer G, Faccio A, Bonfante P, Selosse M-A (2006) Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and non-photosynthetic individuals. Can J Bot 84:1462–1477CrossRefGoogle Scholar
  2. Adamec L (1997) Mineral nutrition of carnivorous plants: a review. Bot Rev 63:273–299CrossRefGoogle Scholar
  3. Allen EB, Allen MF (1990) The mediation of competition by mycorrhizae in successional and patchy environments. In: Grace JR, Tilman D (eds) Perspectives on plant competition. Academic, New York, pp 367–389Google Scholar
  4. Allen EB, Temple PJ, Bytnerowicz A, Arbaugh MJ, Sirulnik AG, Rao LE (2007) Patterns of understory diversity in mixed coniferous forests of southern California impacted by air pollution. ScientificWorldJournal 7, http://www.thescientificworld.com
  5. Baldrian P (2009) Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? Oecologia 161:657–660PubMedCrossRefGoogle Scholar
  6. Bannister P, Strong GL (2001) Carbon and nitrogen isotope ratios, nitrogen content and heterotrophy in New Zealand mistletoes. Oecologia 126:10–20CrossRefGoogle Scholar
  7. Beau C (1920) Sur le role trophique des endophytes d’orchid6es. Comp Rend Acad Sci 171:675–677Google Scholar
  8. Bennett JR, Mathews S (2006) Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. Am J Bot 93:1039–1051PubMedCrossRefGoogle Scholar
  9. Bernard N (1899) Sur la germination du Neottia nidus-avis. C R Hebd Seances Acad Sci 128:1253–1255Google Scholar
  10. Bernard N (1908) La culture des orchidées dans ses rapports avec la symbiose. Société Royale d’Agriculture et de Botanique de Gand, GandGoogle Scholar
  11. Bidartondo MI, Bruns TD (2005) On the origins of extreme mycorrhizal specificity in the Monotropoideae (Ericaceae): performance trade-offs during seed germination and seedling development. Mol Ecol 14:1549–1560PubMedCrossRefGoogle Scholar
  12. Bidartondo MI, Read DJ (2008) Fungal specificity bottlenecks during orchid germination and development. Mol Ecol 17:3707–3716PubMedGoogle Scholar
  13. Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Dominguez L, Sérsic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392PubMedCrossRefGoogle Scholar
  14. Bidartondo MI, Bruns TD, Weiß M, Sérgio C, Read DJ (2003) Specialized cheating of the ectomycorrhizal symbiosis by a epiparasitic liverwort. Proc Biol Sci 270:835–842PubMedCrossRefGoogle Scholar
  15. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: Isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc Biol Sci 271:1799–1806PubMedCrossRefGoogle Scholar
  16. Björkman E (1960) Monotropa hypopitys L.—an epiparasite on tree roots. Physiol Plant 13:308–327CrossRefGoogle Scholar
  17. Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61PubMedCrossRefGoogle Scholar
  18. Booth MG (2004) Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest. Ecol Lett 7:538–546CrossRefGoogle Scholar
  19. Bougoure J, Ludwig M, Brundrett M, Grierson P (2009) Identity and specificity of the fungi forming mycorrhizas with the rare mycoheterotrophic orchid Rhizanthella gardneri. Mycol Res 113:1097–1106PubMedCrossRefGoogle Scholar
  20. Bougoure JJ, Brundrett MC, Grierson PF (2010) Carbon and nitrogen supply to the underground orchid, Rhizanthella gardneri. New Phytol 186:947–956PubMedCrossRefGoogle Scholar
  21. Boullard B (1979) Considérations sur la symbiose fongique chez les Ptéridophytes. Syllogeus 19:1–58Google Scholar
  22. Bruce JG, Beitel JM (1979) A community of Lycopodium gametophytes in Michigan. Am Fern J 69:33–41CrossRefGoogle Scholar
  23. Bruns TD, Read DJ (2000) In vitro germination of nonphotosynthetic, myco-heterotrophic plants stimulated by fungi isolated from the adult plants. New Phytol 148:335–342CrossRefGoogle Scholar
  24. Burgeff H (1932) Saprophytismus und Symbiose. Studien an tropischen Orchideen. Gustav Fischer, Jena, GermanyGoogle Scholar
  25. Burgeff H (1936) Samenkeimung der Orchideen. Gustav Fischer, Jena, GermanyGoogle Scholar
  26. Burgeff H (1959) Mycorrhiza of orchids. In: Withner CL (ed) The orchids. Ronald Press, New York, pp 361–395Google Scholar
  27. Cameron DD, Bolin JF (2010) Isotopic evidence of partial mycoheterotrophy in the Gentianaceae: Bartonia virginica and Obolaria virginica as case studies. Am J Bot 97:1272–1277PubMedCrossRefGoogle Scholar
  28. Cameron DD, Leake JR (2007) A different kind of parasitic plant: a brief history of mycoheterotrophy and epi-parasitism. Haustorium 50:4–6Google Scholar
  29. Cameron KM, Chase MW, Rudall PJ (2003) Recircumscription of the monocotyledonous family Petrosaviaceae to include Japanolirion. Brittonia 55:214–225CrossRefGoogle Scholar
  30. Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from the plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416PubMedCrossRefGoogle Scholar
  31. Cameron DD, Johnson I, Read DJ, Leake JR (2008) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytol 180:176–184PubMedCrossRefGoogle Scholar
  32. Cameron DD, Preiss K, Gebauer G, Read DJ (2009) The chlorophyll-containing orchid Corallorhiza trifida derives little carbon through photosynthesis. New Phytol 183:358–364PubMedCrossRefGoogle Scholar
  33. Camp WH (1940) Aphyllous forms in pyrola. Bull Torrey Bot Club 67:453–465CrossRefGoogle Scholar
  34. Campbell EO (1962) The mycorrhiza of Gastrodia cunninghamii Hook. F. Trans R Soc New Zealand 1:289–296Google Scholar
  35. Campbell EO (1964) The fungal association in a colony of Gastrodia sesamoides. R Br Trans R Soc New Zealand 2:237–246Google Scholar
  36. Cha JY, Igarashi T (1995) Armillaria species associated with Gastrodia elata in Japan. Eur J Forest Pathol 25:319–326CrossRefGoogle Scholar
  37. Cha JY, Igarashi T (1996) Armillaria jezoensis, a new symbiont of Galeola septentrionalis (Orchidaceae) in Hokkaido. Mycoscience 37:21–24CrossRefGoogle Scholar
  38. Chou H (1974) In propagation of Gastrodia elata Bl. Acta Bot Sin 16:288–290Google Scholar
  39. Christoph H (1921) Untersuchungen über mykotrophen Verhältnisse der “Ericales” und die Keimung von Pirolaceen. Beihefte Botan Centralblatt 38:115–157Google Scholar
  40. Courty P-E, Walder F, Boller T, Ineichen K, Wiemken A, Selosse M-A (2011) C and N metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests: a stable isotope analysis. Plant Physiol 156:952–961PubMedCrossRefGoogle Scholar
  41. Currah RS, Zelmer CD, Hambleton S, Richardson KA (1997) Fungi from orchid mycorrhizas. In: Arditti J, Pridgeon AM (eds) Orchid biology: reviews and perspectives, VII. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 117–170CrossRefGoogle Scholar
  42. Curtis JT (1943) Germination and seedling development in five species of Cypripedium. Am J Bot 30:199–206CrossRefGoogle Scholar
  43. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559CrossRefGoogle Scholar
  44. Dearnaley JDW (2006) The fungal endophytes of Erythrorchis cassythoides—is this orchid saprophytic or parasitic? Aust Mycol 25:51–57Google Scholar
  45. Dearnaley JDW, Bougoure JJ (2010) Isotopic and molecular evidence for saprotrophic Marasmiaceae mycobionts in rhizomes of Gastrodia sesamoides. Fungal Ecol 3:288–294CrossRefGoogle Scholar
  46. Dearnaley JDW, Martos F, Selosse M-A (2012) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) Fungal associations, The mycota IX, 2nd edn. Springer-Verlag, BerlinGoogle Scholar
  47. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  48. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  49. Douhan GW, Vincenot L, Selosse M-A (2011) Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115:569–597PubMedCrossRefGoogle Scholar
  50. Downie DG (1959) Rhisoctonia solani and orchid seed. Trans Bot Soc Edinb 37:279–285CrossRefGoogle Scholar
  51. Eriksson O, Kainulainen K (2011) The evolutionary ecology of dust seeds. Perspect Plant Ecol Evol Syst 13:73–87CrossRefGoogle Scholar
  52. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  53. Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624PubMedCrossRefGoogle Scholar
  54. Finlay RD, Read DJ (1986) The structure and function of the vegetative mycelium of ectomycorrhizal plants: 1. Translocation of C-14-labeled carbon between plants interconnected by a common mycelium. New Phytol 103:143–156CrossRefGoogle Scholar
  55. Fitter AH, Graves JD, Watkins NK, Robinson D, Scrimgeour C (1998) Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funct Ecol 12:406–412CrossRefGoogle Scholar
  56. Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular arbuscular mycorrhizal mycelium. Nature 307:53–56CrossRefGoogle Scholar
  57. Frank AB (1885) Neue Mittheilungen über die Mycorrhiza der Bäume und der Monotropa hypopitys. Ber Dtsch Bot Ges 3:27–33Google Scholar
  58. Freudenstein JV (1999) Relationships and character transformation in Pyroloideae (Ericaceae) based on ITS sequences, morphology, and development. Syst Bot 24:398–408CrossRefGoogle Scholar
  59. Freudenstein JV, Doyle JJ (1994) Character transformation and relationships in Corallorhiza (Orchidaceae: Epidendroideae). I. Plastid DNA. Am J Bot 81:1449–1457CrossRefGoogle Scholar
  60. Fry B (2006) Stable isotope ecology. Springer, New York, 308ppGoogle Scholar
  61. Gebauer G (2005) Partnertausch im dunklen Wald—Stabile Isotope geben neue Einblicke in das Ernährungsverhalten von Orchideen. In: Bayer (ed) Auf Spurensuche in der Natur: Stabile Isotope in der ökologischen Forschung. Rundgespräche der Kommission für Ökologie Bd. 30. Akademie der Wissenschaften. Verlag Dr. Friedrich Pfeil, München, Germany, pp 55–67Google Scholar
  62. Gebauer G, Dietrich P (1993) Nitrogen isotope ratios in different compartments of a mixed stand of spruce, larch and beech trees and of understorey vegetation including fungi. Isotopenpraxis 29:35–44CrossRefGoogle Scholar
  63. Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223CrossRefGoogle Scholar
  64. Gebauer G, Schulze E-D (1991) Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia 87:198–207CrossRefGoogle Scholar
  65. Gebauer G, Taylor AFS (1999) 15N natural abundance in fruit bodies of different functional groups of fungi in relation to substrate utilization. New Phytol 142:93–101CrossRefGoogle Scholar
  66. Gebauer G, Rehder H, Wollenweber B (1988) Nitrate, nitrate reduction and organic nitrogen in plants from different ecological and taxonomic groups of Central Europe. Oecologia 75:371–385CrossRefGoogle Scholar
  67. Girlanda M, Selosse M-A, Cafasso D, Brilli F, Delfine S, Fabbian R, Ghignone S, Pinelli P, Segreto R, Loreto F, Cozzolino S, Perotto S (2006) Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Mol Ecol 15:491–504PubMedCrossRefGoogle Scholar
  68. Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S (2011) Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am J Bot 98:1148–1163PubMedCrossRefGoogle Scholar
  69. Gleixner G, Danier H-J, Werner RA, Schmidt H-L (1993) Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing fungi. Plant Physiol 102:1287–1290PubMedGoogle Scholar
  70. Haber E (1987) Variability distribution and systematics of pyrola-picta sensu-lato Ericaceae in Western North America. Syst Bot 12:324–335CrossRefGoogle Scholar
  71. Hadley G (1970) Non-specificity of symbiotic infection in orchid mycorrhiza. New Phytol 69:1015–1023CrossRefGoogle Scholar
  72. Hamada M (1939) Studien über die Mykorrhiza von Galeola septentrionalis Reichb. F.—Ein neuer Fall der Mycorrhizabildung durch intraradicale Rhizomorpha. Jpn J Bot 10:151–211Google Scholar
  73. Hamada M, Nakamura S (1963) Wurzelsymbiose von Galeola altissima Reichb. F., einer chlorophyllfreien Orchidee, mit dem holzzerstörenden Pilz Hymenochaete crocicreas Berk et Br. Science Reports of the Tohoku University, Fourth Series (Biology), vol 29, pp 227–238Google Scholar
  74. Harvais G, Hadley G (1967) The relation between host and endophyte in orchid mycorrhiza. New Phytol 66:205–215CrossRefGoogle Scholar
  75. Hashimoto Y, Kunishi A, Hasegawa S (2005) Interspecific C transfers from Larix kaempferi Carr. to Pyrola incarnata Fischer by way of mycorrhizal fungi. Inoculum (Supplement to Mycologia) 56:23–24Google Scholar
  76. Hashimoto Y, Fukukawa S, Kunishi A, Suga H, Richard F, Sauve M, Selosse M-A (2012) Mycoheterotrophic germination of Pyrola asarifolia dust seeds reveals convergences with germination in orchids. New Phytol 195(3):620–630PubMedCrossRefGoogle Scholar
  77. Hofmeister W (1857) Beiträge zur Entwicklungsgeschichte der Gefässkryptogamen. II. Abh Math Phys Cl Königl Sächs Ges Wiss 3:601–682, Taf. 1–13Google Scholar
  78. Högberg P (1997) Tansley review no. 95. 15N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  79. Högberg P, Plamboeck AH, Taylor AFS, Fransson PMA (1999) Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proc Natl Acad Sci U S A 96:8534–8539PubMedCrossRefGoogle Scholar
  80. Hunt R, Hope-Simpson JF (1990) Growth of Pyrola rotundifolia ssp. maritima in relation to shade. New Phytol 114:129–137CrossRefGoogle Scholar
  81. Hynson NA, Bruns TD (2009) Evidence of a myco-heterotroph in the plant family Ericaceae that lacks mycorrhizal specificity. Proc Biol Sci 276:4053–4059PubMedCrossRefGoogle Scholar
  82. Hynson NA, Bruns TD (2010) Fungal hosts for mycoheterotrophic plants: a nonexclusive, but highly selective club. New Phytol 185:598–601PubMedCrossRefGoogle Scholar
  83. Hynson NA, Preiss K, Gebauer G (2009a) Is it better to give than receive? A stable isotope perspective to orchid-fungal carbon transport in the green orchid species Goodyera repens and Goodyera oblongifolia. New Phytol 182:8–11PubMedCrossRefGoogle Scholar
  84. Hynson NA, Preiss K, Gebauer G, Bruns TD (2009b) Isotopic evidence of full and partial myco-heterotrophy in the plant tribe Pyroleae (Ericaceae). New Phytol 182:719–726PubMedCrossRefGoogle Scholar
  85. Hynson NA, Mambelli S, Amend AS, Dawson TE (2012) Measuring carbon gains from fungal networks in understory plants from the tribe Pyroleae (Ericaceae): a field manipulation and stable isotope approach. Oecologia 169:307–317. doi:10.1007/s00442-011-2198-3 PubMedCrossRefGoogle Scholar
  86. Illyés Z, Halász K, Rudnóy S, Ouanphanivanh N, Garay T, Bratek Z (2009) Changes in the diversity of the mycorrhizal fungi of orchids as a function of the water supply of the habitat. J Appl Bot Food Qual 83:28–36Google Scholar
  87. Imhof S (2008) Specialized mycorrhizal colonization pattern in achlorophyllous Epirixanthes spp. (Polygalaceae). Plant Biol 9:786–792CrossRefGoogle Scholar
  88. Irmisch T (1855) Bemerkungen über einige Pflanzen der deutschen Flora. Flora 13:625–638Google Scholar
  89. Isogai N, Yamamura Y, Mariko S, Nakano T (2003) Seasonal pattern of photosynthetic production in a subalpine evergreen herb, Pyrola incarnata. J Plant Res 116:199–206PubMedCrossRefGoogle Scholar
  90. Johnson-Groh CL (1998) Population demographics, underground ecology and phenology of Botrychium mormo. In: Berlin N, Miller P, Borovansky J, Seal US, Byers O (eds) Population and habitat viability assessment (PHVA) for the goblin fern (Botrychium mormo), Final Report. Conservation Biology Specialist Group, Apple Valley, Minnesota, pp 103–108Google Scholar
  91. Johnson-Groh CL, Lee JM (2002) Phenology and demography of two species of Botrychium (Ophioglossaceae). Am J Bot 89:1624–1633PubMedCrossRefGoogle Scholar
  92. Jones RI (2000) Mixotrophy in planktonic protists: an overview. Freshwater Biol 45:219–226CrossRefGoogle Scholar
  93. Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse M-A (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and non-photosynthetic mutants of Cephalanthera damasonium. New Phytol 166:639–653PubMedCrossRefGoogle Scholar
  94. Kamienski F (1881) Die Vegetationsorgane der Monotropa hypopitys L. Bot Zeit 29:458–461Google Scholar
  95. Kamjunke N, Tittel J (2009) Mixotrophic algae constrain the loss of organic carbon by exudation. J Phycol 45:807–811CrossRefGoogle Scholar
  96. Khan AG (1972) Mycorrhizae in the Pakistan Ericales Pak. J Bot 4:183–194Google Scholar
  97. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Felbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882PubMedCrossRefGoogle Scholar
  98. Kikuchi G, Higuchi M, Yoshimura H, Morota T, Suzuki A (2008a) In vitro symbiosis between Gastrodia elata Blume (Orchidaceae) and Armillaria Kummer (Tricholomataceae) species isolated from the orchid tuber. J Jpn Bot 83:77–87Google Scholar
  99. Kikuchi G, Higuchi M, Morota T, Nagasawa E, Suzuki A (2008b) Fungal symbiont and cultivation test of Gastrodia elata Blume (Orchidaceae). J Jpn Bot 83:88–95Google Scholar
  100. Knudson L (1922) Nonsymbiotic germination of orchid seeds. Bot Gaz 73:1–25CrossRefGoogle Scholar
  101. Kohzu A, Yoshioka T, Ando T, Takahashi M, Koba K, Wada E (1999) Natural 13C and 15N abundance of field-collected fungi and their ecological implications. New Phytol 144:323–330CrossRefGoogle Scholar
  102. Kranabetter JM, MacKenzie WH (2010) Contrasts among mycorrhizal plant guilds in foliar nitrogen concentration and d15N along productivity gradients of a boreal forest. Ecosystems 13:108–117CrossRefGoogle Scholar
  103. Kron KA, Judd WS, Stevens PF, Crayn DM, Anderberg AA, Gadek PA, Quinn CJ, Luteyn JL (2002) Phylogenic classification of Ericaceae: molecular and morphological evidence. Bot Rev 68:335–423CrossRefGoogle Scholar
  104. Kunishi A, Hasegawa S, Hashimoto Y (2004) Effects of mycorrhiza on Pyrola incarnata growing in dark forest floor. In: Proceedings of the 51st annual meeting of the Ecological Society of Japan (JES51)Google Scholar
  105. Kusano S (1911) Gastrodia elata and its symbiotic association with Armillaria mellea. J Coll Agric Imp Univ Tokyo 4:1–65Google Scholar
  106. Leake JR (1994) Tansley review No. 69. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216CrossRefGoogle Scholar
  107. Leake JR (2004) Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Curr Opin Plant Biol 7:422–428PubMedCrossRefGoogle Scholar
  108. Leake JR (2005) Plants parasitic on fungi: unearthing the fungi in myco-heterotrophs and debunking the “saprophytic” plant myth. Mycologist 19:113–122Google Scholar
  109. Lerat S, Gauci R, Catford JG, Vierheilig H, Piché Y, Lapointe L (2002) 14C transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia 132:181–187CrossRefGoogle Scholar
  110. Levin I, Kromer B (1997) Twenty years of atmospheric 14CO2 observations at Schauinsland Station, Germany. Radiocarbon 39:205–218Google Scholar
  111. Liebel HT, Gebauer G (2011) Stable isotope signatures confirm carbon and nitrogen gain through ectomycorrhizas in the ghost orchid Epipogium aphyllum Swartz. Plant Biol 13:270–275PubMedCrossRefGoogle Scholar
  112. Liebel HT, Preiss K, Gebauer G (2009) Parsiell mycoheterotrofi i norske vintergrønnarter – relevans for vernetiltak av truede vintergrønnarter (partial myco-heterotrophy in Norwegian wintergreen species—relevance for endangered species protection). Blyttia J Norw Bot Soc 67:138–143Google Scholar
  113. Liebel HT, Bidartondo MI, Preiss K, Segreto R, Stöckel M, Rodda M, Gebauer G (2010) C and N isotope signatures reveal constraints to nutritional modes in orchids of the Mediterranean and Macaronesia. Am J Bot 97:903–912PubMedCrossRefGoogle Scholar
  114. Lievens B, van Kerckhove S, Justé A, Cammue BPA, Honnay O, Jacquemyn H (2010) From extensive clone libraries to comprehensive DNA arrays for the efficient and simultaneous detection and identification of orchid mycorrhizal fungi. J Microbiol Methods 80:76–85PubMedCrossRefGoogle Scholar
  115. Ligrone R, Pocok K, Duckett JG (1993) A comparative ultrastructural study of endophytic basidiomycetes in the parasitic achlorophyllous hepatic Cryptothallus mirabilis and the closely allied photosynthetic species Aneura pinguis (Metzgeriales). Can J Bot 71:666–679CrossRefGoogle Scholar
  116. Lihnell D (1942) Keimungsversuche mit Pyrola-Samen. Symb Bot Upsal 6:1–37Google Scholar
  117. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, UKGoogle Scholar
  118. Martin F, Selosse M-A (2008) The Laccaria genome: a symbiont blueprint decoded (Tansley review—introduction to a special issue). New Phytol 180:296–310PubMedCrossRefGoogle Scholar
  119. Martos F, Dulormne M, Pailler T, Bonfante P, Faccio A, Fournel J, Dubios M-P, Selosse M-A (2009) Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytol 184:668–681PubMedCrossRefGoogle Scholar
  120. Matsuda Y, Amiya A, Ito S-I (2008) Colonization patterns of mycorrhizal fungi associated with two rare orchids, Cephalanthera falcata and C. erecta.. Ecol Res 24:1023–1031CrossRefGoogle Scholar
  121. Matsuda Y, Shimizu S, Mori M, Ito S-I, Selosse M-A (2012) Seasonal and spatial changes of mycorrhizal associations and heterotrophy levels in mixotrophic Pyrola japonica growing under different light environments. In revision for Am. J, BotGoogle Scholar
  122. Matsushita N, Fukuda K, Nagasawa E, Terashita T, Suzuki K (1996) Armillaria species in Japan identified by isozyme patterns with special reference to the biological species of the Northern hemisphere. J For Res 1:155–160CrossRefGoogle Scholar
  123. Mayor JR, Schuur EAG, Henkel TW (2009) Elucidating the nutritional dynamics of fungi using stable isotopes. Ecol Lett 12:171–183PubMedCrossRefGoogle Scholar
  124. McCormick MK, Whigham DF, O’Neill J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438CrossRefGoogle Scholar
  125. McCormick MK, Taylor DL, Juhaszova K, Burnett RK, Whigham DF, O’Neill JP (2012) Limitations on orchid recruitment: not a simple picture. Mol Ecol 21:1511–1523PubMedCrossRefGoogle Scholar
  126. McGuire KL (2007) Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88:567–574PubMedCrossRefGoogle Scholar
  127. McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548CrossRefGoogle Scholar
  128. McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247CrossRefGoogle Scholar
  129. McNeal JR, Arumugunathan K, Kueh JV, Boore JL, dePamphilis CW (2007) Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae). BMC Biol 5:55PubMedCrossRefGoogle Scholar
  130. Merckx V, Schols P, Van De Kamer HM, Maas HM, Huysmans S, Smets E (2006) Phylogeny and evolution of Burmaniaceae (Dioscoreales) based on nuclear and mitochondrial data. Am J Bot 93:1684–1698PubMedCrossRefGoogle Scholar
  131. Merckx V, Stöckel M, Fleischmann A, Bruns TD, Gebauer G (2010) 15N and 13C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. New Phytol 188:590–596PubMedCrossRefGoogle Scholar
  132. Mettenius G (1856) Filices Horti Botanici Lipsiensis. L. Voss, LeipzigCrossRefGoogle Scholar
  133. Milligan MJ, Williams PG (1988) The mycorrhizal relationship of multinucleate rhizoctonias from non-orchids with Microtis (Orchidaceae). New Phytol 108:205–209CrossRefGoogle Scholar
  134. Montfort C, Küsters E (1940) Saprophytismus und Photosynthese. I. Biochemische und physiologische Studien an Humus-Orchideen. Bot Arch 40:571–633Google Scholar
  135. Motomura H, Yukawa T, Ueno O, Kagawa A (2008) The occurrence of Crassulacean acid metabolism in Cymbidium (Orchidaceae) and its ecological and evolutionary implications. J Plant Res 121:163–177PubMedCrossRefGoogle Scholar
  136. Motomura H, Selosse M-A, Martos F, Kagawa A, Yukawa T (2010) Mycoheterotrophy evolved from mixotrophic ancestors: evidence in Cymbidium (Orchidaceae). Ann Bot 106:573–581PubMedCrossRefGoogle Scholar
  137. Muir HJ (1989) Germination and mycorrhizal fungus compatibility in European orchids. In: Pritchard HW (ed) Modern methods in orchid conservation: the role of physiology, ecology and management. Cambridge University Press, England, pp 39–56Google Scholar
  138. Mursidawati S (2004) Mycorrhizal association, propagation and conservation of the myco-heterotrophic orchid Rhizanthella gardneri. MSc thesis, The University of Western AustraliaGoogle Scholar
  139. Nakano A, Takahashi K, Kimura M (1999) The carbon origin of arbuscular mycorrhizal fungi estimated from δ13C values of individual spores. Mycorrhiza 9:41–47CrossRefGoogle Scholar
  140. Nara K (2006) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178PubMedCrossRefGoogle Scholar
  141. Neales TF, Hew CS (1975) Two types of carbon fixation in tropical orchids. Planta 123:303–306CrossRefGoogle Scholar
  142. Ogura-Tsujita Y, Yukawa T (2008) High mycorrhizal specificity in a widespread mycoheterotrophic plant, Eulophia zollingeri (Orchidaceae). Am J Bot 95:93–97PubMedCrossRefGoogle Scholar
  143. Ogura-Tsujita Y, Gebauer G, Hashimoto T, Umata H, Yukawa T (2009) Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc Biol Sci 276:761–767PubMedCrossRefGoogle Scholar
  144. Ogura-Tsujita Y, Yokoyama J, Miyoshi K, Yukawa T (2012) Shifts in mycorrhizal fungi during the evolution of autotrophy to mycoheterotrophy in Cymbidium (Orchidaceae). Am J Bot 99(7):1158–1176PubMedCrossRefGoogle Scholar
  145. Ota Y, Intini M, Hattori T (2000) Genetic characterization of heterothallic and non-heterothallic Armillaria mellea sensu stricto. Mycol Res 104:1046–1054CrossRefGoogle Scholar
  146. Ouanphanivanh N, Merényi Z, Orczán ÁK, Bratek Z, Szigeti Z, Illyés Z (2008) Could orchids indicate truffle habitats? Mycorrhizal association between orchids and truffles. Acta Biol Szeg 52:229–232Google Scholar
  147. Parrent JL, James TY, Vasaitis R, Taylor AFS (2009) Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC Evol Biol 9:148PubMedCrossRefGoogle Scholar
  148. Pfeffer PE, Douds DD, Bucking H, Schwartz DP, Shachar-Hill Y (2004) The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytol 163:617–627CrossRefGoogle Scholar
  149. Phillips RD, Barrett MD, Dixon KW, Hopper SD (2011) Do mycorrhizal symbioses cause rarity in orchids? J Ecol 99:858–869CrossRefGoogle Scholar
  150. Preiss K, Gebauer G (2008) A methodological approach to improve estimates of nutrient gains by partially myco-heterotrophic plants. Isotopes Environ Health Stud 44:393–401PubMedCrossRefGoogle Scholar
  151. Preiss K, Adam IKU, Gebauer G (2010) Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proc Biol Sci 277:1333–1336PubMedCrossRefGoogle Scholar
  152. Press MC, Graves JD (1995) Parasitic plants. Chapmann & Hall, LondonGoogle Scholar
  153. Press MC, Smith JD, Stewart GR (1991) Carbon acquisition and assimilation relations in parasitic plants. Funct Ecol 5:278–283CrossRefGoogle Scholar
  154. Pridgeon A, Cribb PJ, Chase MM (2008) Genera orchidacearum: vol 4: Epidendroidae. Oxford University Press, New YorkGoogle Scholar
  155. Ramsay RR, Dixon KW, Sivasithamparam K (1986) Patterns of infection and endophytes associated with Western Australian orchids. Lindleyana 1:203–214Google Scholar
  156. Rasmussen HN (1995) Terrestrial orchids from seed to mycotrophic plant. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  157. Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163CrossRefGoogle Scholar
  158. Rayner MC (1927) Mycorrhiza: an account of non-pathogenic infection by fungi in vascular plants and bryophyes. New phytologist reprint no. 15. Wheldon & Wesley, London, UKGoogle Scholar
  159. Reeves P, Chase MW, Goldblatt P, Rudall P, Fay MF, Cox AV, Lejeune B, Souza-Chies T (2001) Molecular systematics of Iridaceae: evidence from four plastid DNA regions. Am J Bot 88:2074–2087PubMedCrossRefGoogle Scholar
  160. Renner O (1938) Über blasse, saprophytische Cephalanthera alba und Epipactis latifolia. Flora 132:225–233Google Scholar
  161. Robertson DC, Robertson JA (1985) Ultrastructural aspects of Pyrola mycorrhizae. Can J Bot 63:1089–1098CrossRefGoogle Scholar
  162. Robinson D, Fitter A (1999) The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot 50:9–13Google Scholar
  163. Roy M, Watthana S, Stier A, Richard F, Vessabutr S, Selosse M-A (2009a) Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi. BMC Biol 7:51PubMedCrossRefGoogle Scholar
  164. Roy M, Yagame T, Yamato M, Iwase K, Heinz C, Faccio A, Bonfante P, Selosse M-A (2009b) Ectomycorrhizal Incybe species associate with the mycoheterotrophic orchid Epipogium aphyllum but not its asexual propagules. Ann Bot 104:595–610PubMedCrossRefGoogle Scholar
  165. Roy M, Gonneau C, Rocheteau A, Berveiller D, Thomas J-C, Damesin C, Selosse M-A (in press) Why do mixotrophic plants stay green? A comparison between green and achlorophyllous orchid individuals in situ. Ecol MonographsGoogle Scholar
  166. Rudall PJ, Bateman R (2006) Morphological phylogenetic analysis of Pandanales: testing contrasting hypotheses of floral evolution. Syst Bot 31:223–238CrossRefGoogle Scholar
  167. Sadovsky O (1965) Orchideen im eigenen Garten. Bayerischer Landwirtschaftsverlag, Munich, GermanyGoogle Scholar
  168. Salisbury RA (1804) On the germination of the seeds of Orchidaceae. Trans Linn Soc Lond 7:29–32CrossRefGoogle Scholar
  169. Salmia A (1986) Chlorophyll-free form of Epipactis helleborine (Orchidaceae) in SE Finland. Ann Bot Fenn 23:49–57Google Scholar
  170. Salmia A (1989a) Features of endomycorrhizal infection of chlorophyll-free and green forms of Epipactis helleborine (Orchidaceae). Ann Bot Fenn 26:15–26Google Scholar
  171. Salmia A (1989b) General morphology and anatomy of chlorophyll-free and green forms of Epipactis helleborine (Orchidaceae). Ann Bot Fenn 26:95–105Google Scholar
  172. Schimel DS (1993) Theory and application of tracers. Academic, San Diego, USAGoogle Scholar
  173. Schulze E-D, Lange OL, Ziegler H, Gebauer G (1991) Carbon and nitrogen isotope ratios of mistletoes growing on nitrogen fixing and non-nitrogen fixing hosts and on CAM plants in the Namib desert confirm partial heterotrophy. Oecologia 88:457–462CrossRefGoogle Scholar
  174. Schulze E-D, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, BerlinGoogle Scholar
  175. Sekizaki H, Kuninaga S, Yamamoto M, Asazu SN, Sawa S, Kojoma M, Yokosawa R, Yoshida N (2008) Identification of Armillaria nabsnona in Gastrodia tubers. Biol Pharm Bull 31:1410–1414PubMedCrossRefGoogle Scholar
  176. Selosse M-A, Rousset F (2011) The plant-fungal marketplace. Science 333:828–829PubMedCrossRefGoogle Scholar
  177. Selosse M-A, Roy M (2009) Green plants eating fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70PubMedCrossRefGoogle Scholar
  178. Selosse M-A, Weiss M, Jany JL, Tillier A (2002) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring treeectomycorrhizae. Mol Ecol 11:1831–1844PubMedCrossRefGoogle Scholar
  179. Selosse M-A, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426PubMedCrossRefGoogle Scholar
  180. Selosse M-A, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 22:621–628CrossRefGoogle Scholar
  181. Selosse M-A, Setaro S, Glatard F, Richard F, Urcelay C, Weiß M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878PubMedCrossRefGoogle Scholar
  182. Selosse M-A, Dubois M-P, Alvarez N (2009) Do Sebacinales commonly associate with plant roots as endophytes? Mycol Res 113:1062–1069PubMedCrossRefGoogle Scholar
  183. Selosse M-A, Martos F, Perry BA, Padamsee M, Roy M, Pailler T (2010) Saprotrophic fungal symbionts in tropical achlorophyllous orchids: finding treasures among the ‘molecular scraps’? Plant Signal Behav 5:1–5CrossRefGoogle Scholar
  184. Selosse M-A, Boullard B, Richardson D (2011) Noel Bernard (1874–1911): orchids to symbiosis in a dozen years, one century ago. Symbiosis 54:61–68CrossRefGoogle Scholar
  185. Sharma J, Zettler LW, Van Sambeek JW, Ellersieck MR, Starbuck CJ (2003) Symbiotic seed germination and mycorrhizae of federally threatened Platanthera praeclara (Orchidaceae). Am Midl Nat 149:104–120CrossRefGoogle Scholar
  186. Shefferson RP, Weiß M, Kull T, Taylor DL (2005) High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium. Mol Ecol 14:613–626PubMedCrossRefGoogle Scholar
  187. Shefferson RP, Kull T, Tali K (2006) Demographic response to shading and defoliation in two woodland orchids. Folia Geobot 41:95–106CrossRefGoogle Scholar
  188. Shefferson RP, Taylor DL, Weiß M, Garnica S, McCormick MK, Adams S, Gray HM, McFarland JW, Kull T, Tali K, Yukawa T, Kawahara T, Miyoshi K, Lee Y-I (2007) The evolutionary history of mycorrhizal specificity among lady’s slipper orchids. Evolution 61:1380–1390PubMedCrossRefGoogle Scholar
  189. Shefferson RP, Kull T, Tali K (2008) Mycorrhizal interactions of orchids colonizing Estonian mine tailings hills. Am J Bot 95:156–164PubMedCrossRefGoogle Scholar
  190. Silvera K, Santiago LS, Cushman JC, Winter K (2010) The incidence of crassulacean acid metabolism in Orchidaceae derived from carbon isotope ratios: a checklist of the flora of Panama and Costa Rica. Bot J Linn Soc 163:194–222CrossRefGoogle Scholar
  191. Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165CrossRefGoogle Scholar
  192. Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582CrossRefGoogle Scholar
  193. Smith SE (1966) Physiology and ecology of orchid mycorrhizal fungi with reference to seedling nutrition. New Phytol 65:488–499CrossRefGoogle Scholar
  194. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London, UKGoogle Scholar
  195. Stark JM (2000) Nutrient transformations. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, New York, pp 215–234CrossRefGoogle Scholar
  196. Stark C, Babik W, Durka W (2009) Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea. Mycol Res 113:952–959PubMedCrossRefGoogle Scholar
  197. Stöckel M, Meyer C, Gebauer G (2011) The degree of mycoheterotrophic carbon gain in green, variegated and vegetative albino individuals of Cephalanthera damasonium is related to leaf chlorophyll concentrations. New Phytol 189:790–796PubMedCrossRefGoogle Scholar
  198. Stokey AG (1950) The gametophyte of the Gleicheniaceae. Bull Torrey Bot Club 77:323–339CrossRefGoogle Scholar
  199. Struwe L, Kadereit J, Klackenberg J, Nilsson S, Thiv M, von Hagen KB, Albert VA (2002) Systematics, character evolution, and biogeography of Gentianaceae, including a new tribal and subtribal classification. In: Struwe L, Albert VA (eds) Gentianaceae—systematics and natural history. Cambridge University Press, Cambridge, pp 21–309Google Scholar
  200. Sung JM, Jung BS, Yang KJ, Lee HK, Harrington TC (1995) Production of Gastrodia elata tuber using Armillaria spp. Korean J Mycol 23:61–70Google Scholar
  201. Taylor DL, Bruns TD (1997) Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proc Natl Acad Sci U S A 94:4510–4515PubMedCrossRefGoogle Scholar
  202. Taylor AFS, Fransson PM, Högberg P, Högberg MN, Plamboeck AH (2003) Species level patterns in 13C and 15N abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytol 159:757–774CrossRefGoogle Scholar
  203. Taylor AFS, Gebauer G, Read DJ (2004) Uptake of nitrogen and carbon from double-labelled (15N and 13C) glycine by mycorrhizal pine seedlings. New Phytol 164:383–388CrossRefGoogle Scholar
  204. Tedersoo L, Pellet P, Kõljalg U, Selosse M-A (2007) Parallel evolutionary paths to mycohetereotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217PubMedCrossRefGoogle Scholar
  205. Tennakoon KU, Pate JS (1996) Heterotrophic gain of carbon from hosts by the xylem-tapping root hemiparasite Olax phyllanthi (Olacaceae). Oecologia 105:369–376CrossRefGoogle Scholar
  206. Terashima K, Kawashima Y, Cha JY, Miura K (1998) Identification of Armillaria species from Hokkaido by analysis of the intergenic spacer (IGS) region of ribosomal DNA using PCR-RFLP. Mycoscience 39:179–183CrossRefGoogle Scholar
  207. Terashita T, Chuman S (1987) Fungi inhabiting wild orchids in Japan. IV. Armillariella tabescens, a new symbiont of Galeola septentrionalis. Trans Mycol Soc Jpn 28:145–154Google Scholar
  208. Terashita T, Chuman S (1989) Armillarias, isolated from the wild orchid, Galeola septentrionalis. In: Proceedings of the 7th IUFRO international conference on root and butt rots of forest trees, pp 364–370Google Scholar
  209. Těšitel J, Plavcová L, Cameron DD (2010) Interactions between hemiparasitic plants and their hosts. The importance of organic carbon transfer. Plant Signal Behav 5:1072–1076PubMedCrossRefGoogle Scholar
  210. Těšitel J, Lepš J, Vráblová M, Cameron DD (2011) The role of heterotrophic carbon acquisition by the hemiparasitic plant Rhinanthus alectorolophus in seedling establishment in natural communities: a physiological perspective. New Phytol 192:188–199PubMedCrossRefGoogle Scholar
  211. Tesitelova T, Těšitel J, Jersáková J, Říhová G, Selosse M-A (2012) Symbiotic germination capability of four Epipactis species (Orchidaceae) is broader than expected from adult ecology. Am J Bot 99(6):1020–1032PubMedCrossRefGoogle Scholar
  212. Teste FP, Simard SW, Durall DM, Guy RD, Jones MD, Schoonmaker AL (2009) Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology 90:2808–2822PubMedCrossRefGoogle Scholar
  213. Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcón-Aguilar C, Bécard G, Bonfante P, Harrison MJ, Küster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JP, Gianinazzi-Pearson V, Martin F (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769PubMedCrossRefGoogle Scholar
  214. Toftegaard T, Iason GR, Alexander IJ, Rosendahl S, Taylor AFS (2010) The threatened plant intermediate wintergreen (Pyrola media) associates with a wide range of biotrophic fungi in native Scottish pine woods. Biodivers Conserv 19:3963–3971CrossRefGoogle Scholar
  215. Tranchida-Lombardo V, Roy M, Bugot E, Santoro G, Püttsepp U, Selosse M-A, Cozzolino S (2010) Spatial repartition and genetic relationship of green and albino individuals in mixed populations of Cephalanthera orchids. Plant Biol 12:659–667PubMedGoogle Scholar
  216. Trudell SA, Rygiewicz PT, Edmonds RL (2003) Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host-specificity of certain achlorophyllous plants. New Phytol 160: 391–401CrossRefGoogle Scholar
  217. Trumbore SE (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10:399–411CrossRefGoogle Scholar
  218. Umata H (1995) Seed germination of Galeola altissima, an achlorophyllous orchid, with aphyllophorales fungi. Mycoscience 36:369–372CrossRefGoogle Scholar
  219. Umata H (1997) Formation of endomycorrhizas by an achlorophyllous orchid, Erythrorchis ochobiensis, and Auricularia polytricha. Mycoscience 38:335–339CrossRefGoogle Scholar
  220. Umata H (1998a) In vitro symbiotic association of an achlorophyllous orchid, Erythrorchis ochobiensis, with orchid and non-orchid fungi. Memoirs of the Faculty of Agriculture, Kagoshima University, vol 34, pp 97–107Google Scholar
  221. Umata H (1998b) A new biological function of shiitake mushroom, Lentinula edodes, in a myco-heterotrophic orchid, Erythrorchis ochobiensis. Mycoscience 39: 85–88CrossRefGoogle Scholar
  222. Umata H (1999) Germination and growth of Erythrorchis ochobiensis (Orchidaceae) accelerated by monokaryons and dikaryons of Lenzites betulinus and Trametes hirsuta. Mycoscience 40:367–371CrossRefGoogle Scholar
  223. Umata H, Kaneko M, Miyagi T, Nakahira Y (2007) The application and utilization of fungi for the propagation of the endangered achlorophyllous plant, Erythrorchis ochobiensis (Hayata) Garay (Orchidaceae) in natural situations. Research Bulletin of the Kagoshima University Forests 35:31–48Google Scholar
  224. Velenovsky J (1892) Über die Biologie und Morphologie der Gattung Moneses. Rozpravy Královské české společnosti nauk, řada, matematicko-přírodovědná 11:147–159Google Scholar
  225. Vincenot L, Tedersoo L, Richard F, Horcine H, Kõljalg U, Selosse M-A (2008) Fungal associates of Pyrola rotundifolia, a mixotrophic Ericaceae, from two Estonian boreal forests. Mycorrhiza 19:15–25PubMedCrossRefGoogle Scholar
  226. Vujanovic V, St-Arnaut M, Barab D, Thibeault G (2000) Viability testing of orchid seed and the promotion of colouration and germination. Ann Bot 86:79–86CrossRefGoogle Scholar
  227. Wagner WH Jr, Wagner FS (1981) New species of moonworts, Botrychium subg. Botrychium (Ophioglossaceae), from North America. Am Fern J 71:20–30CrossRefGoogle Scholar
  228. Warcup JH (1973) Symbiotic germination of some Australian terrestrial orchids. New Phytol 72:387–392CrossRefGoogle Scholar
  229. Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87:371–381CrossRefGoogle Scholar
  230. Warcup JH (1988) Mycorrhizal associations of isolates of Sebacina vermifera. New Phytol 110:227–231CrossRefGoogle Scholar
  231. Warcup JH, Talbot PHB (1967) Perfect states of rhizoctonias associated with orchids. New Phytol 66:631–641CrossRefGoogle Scholar
  232. Waterman RJ, Bidartondo MI, Stofberg J, Combs JK, Gebauer G, Savolainen V, Barraclough TG, Pauw A (2011) The effects of above- and belowground mutualism in orchid speciation and coexistence. Am Nat 177:E54–E68PubMedCrossRefGoogle Scholar
  233. Watson DM (2009) Parasitic plants as facilitators: more dryad than dracula? J Ecol 97:1151–1159CrossRefGoogle Scholar
  234. Weiss M, Selosse M-A, Rexer K, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010PubMedCrossRefGoogle Scholar
  235. Weiss M, Sýkorová Z, Garnica S, Riess K, Martos F, Krause C, Oberwinkler F, Bauer R, Redecker D (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One 6:e16793PubMedCrossRefGoogle Scholar
  236. Westwood JH, Yoder JI, Timko MP, dePamphilis CW (2010) The evolution of parasitism in plants. Trends Plant Sci 15:227–235PubMedCrossRefGoogle Scholar
  237. Whittier P (1988) Dark-grown psilotum. Am Fern J 78:109–116CrossRefGoogle Scholar
  238. Whittier DP, Renzaglia KS (2005) The young gametophyte of Lycopodiella lateralis and the role of the intermediate shaft in development of Lycopodiella gametophytes. Am Fern J 95:153–159CrossRefGoogle Scholar
  239. Winther JL, Friedman WE (2007) Arbuscular mycorrhizal symbionts in Botrychium (Ophioglossaceae). Am J Bot 94:1248–1255PubMedCrossRefGoogle Scholar
  240. Winther JL, Friedman WE (2008) Arbuscular mycorrhizal associations in Lycopodiaceae. New Phytol 177:790–801PubMedCrossRefGoogle Scholar
  241. Winther JL, Friedman WE (2009) Phylogenetic affinity of arbuscular mycorrhizal symbionts in Psilotum nudum. J Plant Res 122:485–496PubMedCrossRefGoogle Scholar
  242. Wright M, Cross R, Dixon K, Huynh T, Lawrie A, Nesbitt L, Pritchard A, Swarts N, Thomson R (2009) Propagation and reintroduction of Caladenia. Aust J Bot 57:373–387CrossRefGoogle Scholar
  243. Wright MM, Cross R, Cousens RD, May TW, McLean CB (2010) Taxonomic and functional characterisation of fungi from the Sebacina vermifera complex from common and rare orchids in the genus Caladenia. Mycorrhiza 20:375–390PubMedCrossRefGoogle Scholar
  244. Wu BY, Nara K, Hogetsu T (2001) Can C-14-labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol 149:137–146CrossRefGoogle Scholar
  245. Wu J, Ma H, Lü M, Han S, Zhu Y, Jin H, Liang J, Liu L, Xu J (2010) Rhizoctonia fungi enhance the growth of the endangered orchid Cymbidium goeringii. Botany 88:20–29CrossRefGoogle Scholar
  246. Xu J, Guo S (2000) Retrospect on the research of the cultivation of Gastrodia elata Bl, a rare traditional Chinese medicine. Chin Med J 113:686–692PubMedGoogle Scholar
  247. Yagame T, Yamato M, Mii M, Suzuki A, Iwase K (2007) Developmental processes of achlorophyllous orchid, Epipogium roseum: from seed germination to flowering under symbiotic cultivation with mycorrhizal fungus. J Plant Res 120:229–236PubMedCrossRefGoogle Scholar
  248. Yagame T, Fukiharu T, Yamato M, Suzuki A, Iwase K (2008a) Identification of a mycorrhizal fungus in Epipogium roseum (Orchidaceae) from morphological characteristics of basidiomata. Mycoscience 49: 147–151CrossRefGoogle Scholar
  249. Yagame T, Yamato M, Suzuki A, Iwase K (2008b) Ceratobasidiaceae mycorrhizal fungi isolated from nonphotosynthetic orchid Chamaegastrodia sikokiana. Mycorrhiza 18:97–101PubMedCrossRefGoogle Scholar
  250. Yagame T, Orihara T, Selosse M-A, Yamato M, Iwase K (2012) Mixotrophy of Platanthera minor, an orchid associated with ectomycorrhiza-forming Ceratobasidiaceae fungi. New Phytol 193:178–187PubMedCrossRefGoogle Scholar
  251. Yamato M, Iwase K (2008) Introduction of asymbiotically propagated seedlings of Cephalanthera falcata (Orchidaceae) into natural habitat and investigation of colonized mycorrhizal fungi. Ecol Res 23:329–337CrossRefGoogle Scholar
  252. Yamato M, Yagame T, Suzuki A, Iwase K (2005) Isolation and identification of mycorrhizal fungi associating with an achlorophyllous plant, Epipogium roseum (Orchidaceae). Mycoscience 46:73–77CrossRefGoogle Scholar
  253. Zettler LW, Hofer CJ (1998) Propagation of the little club-spur orchid (Platanthera clavellata) by symbiotic seed germination and its ecological implications. Environ Exp Bot 39:189–195CrossRefGoogle Scholar
  254. Zettler LW, Stewart SL, Bowles ML, Jacobs KA (2001) Mycorrhizal fungi and cold-assisted symbiotic germination of federally threatened eastern prairie fringed orchid, Platanthera leucophaea (Nuttall) Lindley. Am Midl Nat 145:168–175CrossRefGoogle Scholar
  255. Zimmer K, Hynson NA, Gebauer G, Allen EB, Allen MF, Read DJ (2007) Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytol 175:166–175PubMedCrossRefGoogle Scholar
  256. Zimmer K, Meyer C, Gebauer G (2008) The ectomycorrhizal specialist orchid Corallorhiza trifida is a partial myco-heterotroph. New Phytol 178:395–400PubMedCrossRefGoogle Scholar
  257. Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel K-H (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7:e1002290PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nicole A. Hynson
    • 1
  • Thomas P. Madsen
    • 2
  • Marc-André Selosse
    • 3
  • Iris K. U. Adam
    • 4
  • Yuki Ogura-Tsujita
    • 5
  • Melanie Roy
    • 3
    • 6
  • Gerhard Gebauer
    • 4
  1. 1.Department of BotanyUniversity of Hawaii at ManoaHonoluluUSA
  2. 2.Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUSA
  3. 3.Centre d’Ecologie Fonctionnelle et Evolutive (CEFE-CNRS)MontpellierFrance
  4. 4.Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
  5. 5.Department of Chemical and Biological SciencesJapan Women’s UniversityTokyoJapan
  6. 6.Laboratoire Evolution et Diversité Biologique (UMR5174 EDB)Université de ToulouseToulouseFrance

Personalised recommendations