Mycoheterotrophy: An Introduction



“Mycoheterotrophy” is a term for a plant’s ability to obtain carbon from associated fungi. Many plants are capable of mycoheterotrophy, including liverworts, lycophytes, ferns, and angiosperms. Some plants completely depend on mycoheterotrophy during their entire life cycle; others rely on mycoheterotrophy only at a particular stage of their development or are able to perform mycoheterotrophy and autotrophy simultaneously. In this introductory part, I discuss the basic concepts of mycoheterotrophy as well as the terminology and definitions used in this book. Since an understanding of mycoheterotrophy relies heavily on general concepts of the mycorrhizal symbiosis, I provide a basic introduction into mycorrhizal associations, with emphasis on plant–fungus interactions capable of mycoheterotrophy. This chapter ends with a short historical overview of scientific research on mycoheterotrophy that has led to our current understanding of this fascinating phenomenon.


Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Arbuscular Mycorrhiza Ectomycorrhizal Fungus Arbuscular Mycorrhiza 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abadie J, Püttsepp Ü, Gebauer G, Faccio A, Bonfante P, Selosse MA (2006) Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Can J Bot 84:1462–1477CrossRefGoogle Scholar
  2. Alexander C, Hadley G (1985) Carbon movement between host and mycorrhizal endophyte during development of the orchid Goodyera repens. New Phytol 101:657–665CrossRefGoogle Scholar
  3. Bachar A, Achituv Y, Pastemak Z, Dubinsky Z (2007) Autotrophy versus heterotrophy: the origin of carbon determines its fate in a symbiotic sea anemone. J Exp Mar Biol Ecol 349:295–298CrossRefGoogle Scholar
  4. Barkman TJ, McNeal JR, Lim S-H, Coat G, Croom HB, Young ND, dePamphilis CW (2007) Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 7:248PubMedCrossRefGoogle Scholar
  5. Beatty GE, Provan J (2011) High clonal diversity in threatened peripheral populations of the yellow bird’s nest (Hypopitys monotropa; syn. Monotropa hypopitys). Ann J Bot 107:663–670CrossRefGoogle Scholar
  6. Berch SM, Massicotte HB, Tackaberry LE (2005) Re-publication of a translation of ‘The vegetative organs of Monotropa hypopitys L.’ published by F. Kamienski in 1882, with an update on Monotropa mycorrhizas. Mycorrhiza 15:323–332PubMedCrossRefGoogle Scholar
  7. Bernard N (1899) Sur la germination du Neottia nidus-avis. C R Hebd Seances Acad Sci 128:1253–1255Google Scholar
  8. Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21PubMedCrossRefGoogle Scholar
  9. Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352PubMedCrossRefGoogle Scholar
  10. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read D (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc B 271:1799–1806PubMedCrossRefGoogle Scholar
  11. Bidartondo MI, Bruns TD (2001) Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographic structure. Mol Ecol 10:2285–2295PubMedCrossRefGoogle Scholar
  12. Bidartondo MI, Bruns TD (2002) Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Mol Ecol 11:557–569PubMedCrossRefGoogle Scholar
  13. Bidartondo MI, Bruns TD, Weiß M, Sérgio C, Read DJ (2003) Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc Lond B 270:835–842CrossRefGoogle Scholar
  14. Bidartondo MI, Kretzer AM, Pine EM, Bruns TD (2000) High root concentration and uneven ectomycorrhizal diversity near Sarcodes sanguinea (Ericaceae): a cheater that stimulates its victims? Am J Bot 87:1783–1788PubMedCrossRefGoogle Scholar
  15. Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577PubMedCrossRefGoogle Scholar
  16. Bidartondo MI, Redecker D, Hijiri I, Wiemken A, Bruns TD, Dominguez LS, Sérsic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392PubMedCrossRefGoogle Scholar
  17. Björkman E (1960) Monotropa hypopitys L.—an epiparasite on tree roots. Physiol Plant 13:308–327CrossRefGoogle Scholar
  18. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48PubMedCrossRefGoogle Scholar
  19. Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217PubMedCrossRefGoogle Scholar
  20. Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287CrossRefGoogle Scholar
  21. Bruns TD, Shefferson RP (2004) Evolutionary studies of ectomycorrhizal fungi: recent advances and future directions. Can J Bot 82:1122–1132CrossRefGoogle Scholar
  22. Burgeff H (1909) Die wurzelpiltze der orchideen. Gustav Fisher, Jena, GermanyGoogle Scholar
  23. de Bary HA (1879) Die erscheinung der Symbiose. Trübner, Strassburg, GermanyGoogle Scholar
  24. Caddick LR, Rudall PJ, Wilkin P, Chase MW (2000) Yams and their allies: systematics of Dioscoreales. In: Wilson KJ, Morrison DA (eds) Monocots: systematics and evolution. CSIRO Publishing, Melbourne, pp 475–487Google Scholar
  25. Caddick LR, Rudall PJ, Wilkin P, Hedderson TA, Chase MW (2002) Phylogenetics of Dioscoreales based on combined analyses of morphological and molecular data. Bot J Linn Soc 138:123–144CrossRefGoogle Scholar
  26. Cameron DD, Johnson I, Read DJ, Leake JR (2008) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Gooyera repens. New Phytol 180:176–184PubMedCrossRefGoogle Scholar
  27. Cameron DD, Leake JR (2007) A different kind of parasitic plant: a brief history of mycoheterotrophy and parasitism. Haustorium 50:4–6Google Scholar
  28. Cameron DD, Preiss K, Gebauer G, Read DJ (2009) The chlorophyll-containing orchid Corallorhiza trifida derives little carbon through photosynthesis. New Phytol 183:358–364PubMedCrossRefGoogle Scholar
  29. Cameron KM, Chase MW, Rudall P (2003) Recircumscription of the monocotyledonous family Petrosaviaceae to include Japonolirion. Brittonia 55:214–225CrossRefGoogle Scholar
  30. Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedrén M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Equiarte LE, Golenberg E, Learn GH, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard 80:528CrossRefGoogle Scholar
  31. Courty P-E, Walder F, Boller T, Ineichen K, Wiemken A, Rousteau A, Selosse M-A (2011) C and N metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests: a stable isotope analysis. Plant Physiol 156:952–961Google Scholar
  32. Cullings KW, Szaro TM, Bruns TD (1996) Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. Nature 379:63–66CrossRefGoogle Scholar
  33. Delannoy E, Fujii S, Colas des Francs C, Brundrett M, Small I (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Bio Evol 28:2077–2086CrossRefGoogle Scholar
  34. dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a nonphotosynthetic plant. Nature 348:337–339PubMedCrossRefGoogle Scholar
  35. Domínguez LS, Melville L, Sérsic A, Faccio A, Peterson RL (2009) The mycoheterotroph Arachnitis uniflora has a unique association with arbuscular mycorrhizal fungi. Botany 87:1198–1208CrossRefGoogle Scholar
  36. Dowie NJ, Hemenway JJ, Trowbridge SM, Miller SL (2011) Mycobiont overlap between two mycoheterotrophic genera of Monotropoideae (Pterospora andromedea and Sarcodes sanguinea) found in the Greater Yellowstone Ecosystem. Symbiosis 54:29–36CrossRefGoogle Scholar
  37. Drude O (1873) Die Biologie von Monotropa Hypopitys L. und Neottia-nidus-avis L. unter vergleichender Hinzuziehung anderer Orchideen. Unversität Göttingen Preisgerkrönte Schrift, Göttingen, GermanyGoogle Scholar
  38. Egger KN, Hibbett DS (2004) The evolutionary implications of exploitation in mycorrhizas. Can J Bot 82:1110–1121CrossRefGoogle Scholar
  39. Eiler A (2006) Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl Environ Microbiol 72:7431–7437PubMedCrossRefGoogle Scholar
  40. Eriksson O, Kainulainen K (2011) The evolutionary ecology of dust seeds. Perspect Plant Ecol Evol Systemat 13:73–87CrossRefGoogle Scholar
  41. Francke H-L (1934) Beiträge zur Kenntnis der Mykorrhiza von Monotropa hypopitys L. Analyse und Synthese der Symbiose. Flora 129:1–52Google Scholar
  42. Gebauer G (2005) Partnertausch im dunklen Wald–Stabile Isotope geben neue Einblicke in das Ernährungsverhalten von Orchideen. In Rundgespräche der Kommission für Ökologie, vol 30 (ed. Bayerische Akademie der Wissenschaften). Verlag Dr. Friedrich Pfeil, München, Germany, p 55–67Google Scholar
  43. Gebauer G, Dietrich P (1993) Nitrogen isotope ratios in different compartments of a mixed stand of spruce, larch and beech trees and of understorey vegetation including fungi. Isotopenpraxis 29:35–44CrossRefGoogle Scholar
  44. Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223CrossRefGoogle Scholar
  45. Giovannetti M, Sbrana C, Avio L, Strani P (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181CrossRefGoogle Scholar
  46. Gleixner G, Danier H-J, Werner RA, Schmidt H-L (1993) Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing basidiomycetes. Plant Physiol 102:1287–1290PubMedGoogle Scholar
  47. Hamada M (1939) Studien über die Mykorrhiza von Galeola septentrionalis Reichb. F.—ein neuer Fall der Mykorrhiza-Bildung durch intraradicale Rhizomorpha. Jap J Bot 10:151–211Google Scholar
  48. Heide-Jørgensen HS (2008) Parasitic flowering plants. Koninklijke Brill NV, Leiden, The NetherlandsCrossRefGoogle Scholar
  49. Hentrich H, Kaiser R, Gottsberger G (2010) The reproductive biology of Voyria (Gentianaceae) species in French Guiana. Taxon 59:867–880Google Scholar
  50. Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14:49–53PubMedCrossRefGoogle Scholar
  51. Hibbett DS, Matheny PB (2009) The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed clock analyses. BMC Evol Biol 7:13CrossRefGoogle Scholar
  52. Hynson NA, Mambelli S, Amend AS, Dawson TE (2011) Measuring carbon gains from fungal networks in understory plants from the tribe Pyroleae (Ericaceae): a field manipulation and stable isotope approach. Oecologia 169:307–317PubMedCrossRefGoogle Scholar
  53. Imhof S (1999) Anatomy and mycotrophy of the achlorophyllous Afrothismia winkleri. New Phytol 144:533–540CrossRefGoogle Scholar
  54. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586CrossRefGoogle Scholar
  55. Julou T, Burghardt B, Gebauer C, Berveiller D, Damesin C, Selosse MA (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166:639–653PubMedCrossRefGoogle Scholar
  56. Kamienski F (1882) Les organs végétatifs du Monotropa hypopitys L. Mémoires de la Société Nationale des Sciences Naturelles et Mathématiques de Cherbourg 24:5–40Google Scholar
  57. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301CrossRefGoogle Scholar
  58. Klooster MR, Culley TM (2009) Comparative analysis of the reproductive ecology of Monotropa and Monotropsis: two mycoheterotrophic genera in the Monotropoideae (Ericaceae). Am J Bot 96:1337–1347PubMedCrossRefGoogle Scholar
  59. Klooster MR, Culley TM (2010) Population genetic structure of the mycoheterotroph Monotropa hypopitys L. (Ericaceae) and differentiation between red and yellow color forms. Int J Plant Sci 171:167–174CrossRefGoogle Scholar
  60. Kretzer AM, Bidartondo MI, Szaro TM, Grubisha L, Bruns TD (2000) Regional specialization of Sarcodes sanguinea on a single fungal symbiont from the Rhizopogon ellenae species complex. Am J Bot 87:1778–1783PubMedCrossRefGoogle Scholar
  61. Kristiansen KA, Freudenstein JV, Rasmussen FH, Rasmussen HN (2004) Molecular identification of mycorrhizal fungi in Neuwiedia veratrifolia (Orchidaceae). Mol Phylogenet Evol 33:251–258PubMedCrossRefGoogle Scholar
  62. Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2011) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984PubMedCrossRefGoogle Scholar
  63. Kusano S (1911) Gastrodia elata and its symbiotic association with Armillaria mellea. J Coll Agr Imp Univ Tokyo 4:1–65Google Scholar
  64. Le Page BA, Currah RS, Stockey RA, Rothwell GW (1997) Fossil ectomycorrhizae from the Middle Eocene. Am J Bot 84:410–412CrossRefGoogle Scholar
  65. Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216CrossRefGoogle Scholar
  66. Leake JR (2005) Plants parasitic on fungi: unearthing the fungi in myco-heterotrophs and debunking the ‘saprophytic’ plant myth. Mycologist 19:113–122Google Scholar
  67. Leake JR, Cameron DD (2010) Physiological ecology of mycoheterotrophy. New Phytol 185:601–605PubMedCrossRefGoogle Scholar
  68. Leake JR, Cameron DD, Beerling BJ (2008) Fungal fidelity in the myco-heterotroph-to-autotroph life cycle of Lycopodiaceae: a case of parental nurture? New Phytol 177:572–576PubMedCrossRefGoogle Scholar
  69. Logacheva MD, Schelkunov MI, Penin AA (2011) Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis. Genome Biol Evol 3:1296–1303PubMedCrossRefGoogle Scholar
  70. MacDougal DT (1899) Symbiotic saprophytism. Ann Bot 13:1–47Google Scholar
  71. Martos F, Dulormne M, Pailler T, Bonfante P, Faccio A, Fournel J, Dubois M-P, Selosse M-A (2009) Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytol 184:668–681PubMedCrossRefGoogle Scholar
  72. Massicotte HB, Melville LH, Peterson RL (2005) Structural features of mycorrhizal associations in two members of the Monotropoideae, Monotropa uniflora and Pterospora andromedea. Mycorrhiza 15:101–110PubMedCrossRefGoogle Scholar
  73. McKendrick SL, Leake JR, Read DJ (2000a) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548CrossRefGoogle Scholar
  74. McKendrick SL, Leake JR, Taylor DL, Read DJ (2000b) Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytol 145:523–537CrossRefGoogle Scholar
  75. McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247CrossRefGoogle Scholar
  76. Merckx V, Chatrou LW, Lemaire B, Sainge MN, Huysmans S, Smets E (2008) Diversification of myco-heterotrophic angiosperms: evidence from Burmanniaceae. BMC Evol Biol 8:178PubMedCrossRefGoogle Scholar
  77. Merckx V, Stöckel M, Fleischmann A, Bruns TD, Gebauer G (2010) 15N and 13C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. New Phytol 188:590–596PubMedCrossRefGoogle Scholar
  78. Molvray M, Kores PJ, Chase MW (2000) Polyphyly of mycoheterotrophic orchids and functional influences of floral and molecular characters. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO Publishing, Collingwood, Australia, pp 441–448Google Scholar
  79. Moyersoen B (2006) Pakaraimaea dipterocarpaceae is ectomycorrhizal, indicating an ancient Gondwanaland origin of the ectomycorrhizal habit in Dipterocarpaceae. New Phytol 172:753–762PubMedCrossRefGoogle Scholar
  80. Muir J (1912) The Yosemite. The Century Co, New York, USAGoogle Scholar
  81. Nais J (2001) Rafflesia of the world. Natural History Publications, Kota Kinabalu, MalaysiaGoogle Scholar
  82. Ogura-Tsujita Y, Gebauer G, Hashimoto T, Umata H, Yukawa T (2009) Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc R Soc Lond B 22:761–767CrossRefGoogle Scholar
  83. Ogura-Tsujita Y, Yukawa T (2008) High mycorrhizal specificity in a widespread mycoheterotrophic plant, Eulophia zollingeri (Orchidaceae). Am J Bot 95:93–97PubMedCrossRefGoogle Scholar
  84. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241PubMedCrossRefGoogle Scholar
  85. Pfeffer W (1877) Über fleischfressende Planzen und über die Ernährung durch Aufnahme organischer Stoffe überhaupt. Landwirtschaftliche Jahrbücher 6:969–988Google Scholar
  86. Preiss K, Adam IK, Gebauer G (2010) Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proc R Soc Lond B 277:1333–1336CrossRefGoogle Scholar
  87. Prillieux E (1856) De la structure anatomique et du mode de végétation du Neottia nidus-avis. Ann des Sci Naturelles Series 4:267–282Google Scholar
  88. Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  89. Rasmussen HN, Whigham DF (1998) The underground phase: a special challenge in studies of terrestrial orchid populations. Bot J Linn Soc 126:49–64CrossRefGoogle Scholar
  90. Rayner MC (1927) Mycorrhiza: an account of non-pathogenic infection by fungi in vascular plants and bryophytes. New Phytologist Reprint no. 15. Wheldon & Wesley, London, UKGoogle Scholar
  91. Reinke J (1873) Zur Kenntnis des Rhizomes von Corallorhiza und Epipogon. Flora 56:161–167Google Scholar
  92. Reissek S (1847) Über endophyten der Pflanzenzelle, eine gesetzmässige den Samenfaden oder beweglichen Spiralfasern analoge Erscheinung. Naturwissenschaftlige Abhandlungen 1:3146Google Scholar
  93. Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perrenials under low nitrogen supply in glasshouse culture. New Phytol 167:869–880PubMedCrossRefGoogle Scholar
  94. Rylands TG (1842) On the mode of growth of Monotropa hypopitys. Phytologist 16:329–330Google Scholar
  95. Saari SK, Campbell CD, Russell J, Alexander IJ, Anderson IC (2005) Pine microsatellite markers allow roots and ectomycorrhizas to be linked to individual trees. New Phytol 165:295–304PubMedCrossRefGoogle Scholar
  96. Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592PubMedCrossRefGoogle Scholar
  97. Schacht H (1854) Pilzfaden im Innern der Zellen und der Starkmehlkörner vor. Flora 39:618–624Google Scholar
  98. Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70PubMedCrossRefGoogle Scholar
  99. Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69CrossRefGoogle Scholar
  100. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London, UKGoogle Scholar
  101. Stevens PF (2012) Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since]Google Scholar
  102. Taylor DL, Bruns TD (1997) Independent, specialized invasions of the ectomycorrhizal mutualism by two non-photosynthetic orchids. Proc Natl Acad Sci USA 94:4510–4515PubMedCrossRefGoogle Scholar
  103. Taylor DL, Bruns TD, Hodges SA (2004) Evidence for mycorrhizal races in a cheating orchid. Proc R Soc Lond B 271:35–43CrossRefGoogle Scholar
  104. Taylor DL, Bruns TD, Leake JR, Read DJ (2002) Mycorrhizal specificity and function in myco-heterotrophic plants. In: Van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Springer, Berlin, Germany, pp 375–413CrossRefGoogle Scholar
  105. Tedersoo L, May T, Smith M (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263PubMedCrossRefGoogle Scholar
  106. Tedersoo L, Pellet P, Kõljalg U, Selosse MA (2007) Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217PubMedCrossRefGoogle Scholar
  107. Thingstad TF, Havskum H, Garde K, Riemann B (1996) On the strategy of “eating your competitor”: a mathematical analysis of algal mixotrophy. Ecology 77:2108–2118CrossRefGoogle Scholar
  108. Trudell SA, Rygiewicz PT, Edmonds RL (2003) Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host-specificity of ­certain achlorophyllous plants. New Phytol 160:391–401CrossRefGoogle Scholar
  109. Wickett NJ, Fan Y, Lewis PO, Goffinet B (2008) Distribution and evolution of pseudogenes, gene losses, and a gene rearrangement in the plastid genome of the nonphotosynthetic liverwort, Aneura mirabilis (Metzgeriales, Jungermanniopsida). J Mol Evol 67:111–122PubMedCrossRefGoogle Scholar
  110. Yamato M (2001) Identification of a mycorrhizal fungus in the roots of achlorophyllous Sciaphila tosaensis Makino (Triuridaceae). Mycorrhiza 11:83–88CrossRefGoogle Scholar
  111. Yamato M, Yagame T, Suzuki A, Iwase K (2005) Isolation and identification of mycorrhizal fungi associating with an achlorophyllous plant, Epipogium roseum (Orchidaceae). Mycoscience 46:73–77CrossRefGoogle Scholar
  112. Yukawa T, Ogura-Tsujita Y, Shefferson R, Yokoyama J (2009) Mycorrhizal diversity in Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza. Am J Bot 96:1997–2009PubMedCrossRefGoogle Scholar
  113. Zimmer K, Hynson NA, Gebauer G, Allen EB, Allen MF, Read DJ (2007) Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytol 175:166–175PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Naturalis Biodiversity CenterLeiden UniversityLeidenThe Netherlands

Personalised recommendations