Nitrogen in Titan’s Atmospheric Aerosol Factory

  • Nathalie CarrascoEmail author
  • Joseph Westlake
  • Pascal Pernot
  • Hunter WaiteJr.
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 35)


Titan’s organic aerosols are presumed to contain a large amount of nitrogen as inferred from the in situ measurements of the ACP instrument on board the Huygens probe. They show major emissions of ammonia and hydrogen cyanide after pyrolysis of the refractory nuclei of the atmospheric aerosols. Molecular nitrogen is a rather chemically inert molecule and the processes leading to the high nitrogen content of Titan’s aerosols are far from being understood. Here we synthesize the results obtained on Titan’s nitrogen composition from analysis of laboratory analogues produced with the PAMPRE experimental setup. These analogues are compared with the in situ measurements of the Cassini CAPS-IBS instrument.


Hydrogen Cyanide Huygens Probe Neutral Mass Spectrometer Ethylene Plasma High Resolution Mass Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the ANR contract ANR-09-JCJC-0038.


  1. Balucani, N., Leonori, F., et al.: Formation of nitriles and imines in the atmosphere of Titan: combined crossed-beam and theoretical studies on the reaction dynamics of excited nitrogen atoms N(2D) with ethane. Faraday Discuss. 147(0), 189–216 (2010)ADSCrossRefGoogle Scholar
  2. Carrasco, N., Schmitz-Afonso, I., et al.: Chemical characterization of Titan’s Tholins: solubility, morphology and molecular structure revisited. J. Phys. Chem. A 113(42), 11195–11203 (2009)CrossRefGoogle Scholar
  3. Carrasco, N., Gautier, T., et al.: Volatile products controlling Titan’s tholins production. Icarus 219(1), 230–240 (2012)ADSCrossRefGoogle Scholar
  4. Coates, A.J., Crary, F.J., Lewis, G.R., Young, D.T., Waite, J.H. Jr., Sittler, E.C. Jr: Discovery of heavy negative ions in Titan’s ionosphere, Geophys. Res. Lett. 34(22), L22103 (2007)ADSCrossRefGoogle Scholar
  5. Coll, P., Coscia, D., et al.: Experimental laboratory simulation of Titan’s atmosphere: aerosols and gas phase. Planet. Space Sci. 47, 1331–1340 (1999)ADSCrossRefGoogle Scholar
  6. Coustenis, A., Achterberg, R.K., et al.: The composition of Titan’s stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189(1), 35–62 (2007)ADSCrossRefGoogle Scholar
  7. Crary, F., Magee, B., Mandt, K., Waite, J. Jr., Westlake, J., Young, D.: Heavy ions, temperatures and winds in Titan’s ionosphere: combined Cassini CAPS and INMS observations. Planet. Space Sci. 57(14–15), 1847–1856 (2009)ADSCrossRefGoogle Scholar
  8. Cravens, T.E., Robertson, I.P., et al.: Composition of Titan’s ionosphere. Geophys. Res. Lett. 33, L07105 (2006)ADSCrossRefGoogle Scholar
  9. Deschenaux, C., Affolter, A., et al.: Investigations of CH4, \(\mathrm{C}_{2}\mathrm{H}_{2}\) and \(\mathrm{C}_{2}\mathrm{H}_{4}\) dusty RF plasmas by means of FTIR absorption spectroscopy and mass spectrometry. J. Phys. D 32(15), 1876 (1999)ADSCrossRefGoogle Scholar
  10. Imanaka, H., Smith, M.A.: Role of photoionization in the formation of complex organic molecules in Titan’s upper atmosphere. Geophys. Res. Lett. 34(2), L02204 (2007)ADSCrossRefGoogle Scholar
  11. Imanaka, H., Smith, M.A.: Formation of nitrogenated organic aerosols in the Titan upper atmosphere. Proc. Natl. Acad. Sci. 107(28), 12423–12428 (2010)ADSCrossRefGoogle Scholar
  12. Israel, G., Szopa, C., et al.: Complex organic matter in Titan’s atmospheric aerosols from in situ pyrolysis and analysis. Nature 438(7069), 796–799 (2005)ADSCrossRefGoogle Scholar
  13. Khare, B.N., Sagan, C., et al.: The organic aerosols of Titan. Adv. Space Res. 4(12), 59–68 (1984)ADSCrossRefGoogle Scholar
  14. Lavvas, P.P., Coustenis, A., et al.: Coupling photochemistry with haze formation in Titan’s atmosphere, part II: results and validation with Cassini/Huygens data. Planet. Space Sci. 56(1), 67–99 (2008)ADSCrossRefGoogle Scholar
  15. Lavvas, P., Yelle, R.V., et al.: The detached haze layer in Titan’s mesosphere. Icarus 201(2), 626–633 (2009)ADSCrossRefGoogle Scholar
  16. Lebonnois, S., Bakes, E.L.O., et al.: Transition from gaseous compounds to aerosols in Titan’s atmosphere. Icarus 159(2), 505–517 (2002)ADSCrossRefGoogle Scholar
  17. Magee, B., Waite, J., Mandt, K., Westlake, J., Bell, J., Gell, D.: INMS-derived composition of Titan’s upper atmosphere: analysis methods and model comparison. Planet. Space Sci. 57(14–15), 1895–1916 (2009)ADSCrossRefGoogle Scholar
  18. Peng, Z., Gautier, T., Carrasco, N., Pernot, P., Giuliani, A., Mahjoub, A., Correia, J.-J., Buch, A., Bénilan, Y., Szopa C., and Cernogora, G.: Titan’s atmosphere simulation experiment using continuum UV-VUV synchrotron radiation. J. Geophys. Res. (In press, 2013)Google Scholar
  19. Pernot, P., Carrasco, N., et al.: Tholinomics: chemical analysis of nitrogen-rich polymers. Anal. Chem. 82(4), 1371–1380 (2010)ADSCrossRefGoogle Scholar
  20. Sciamma-O’Brien, E., Carrasco, N., et al.: Titan’s atmosphere: an optimal gas mixture for aerosol production? Icarus 209(2), 704–714 (2010)ADSCrossRefGoogle Scholar
  21. Somogyi, A., Oh, C.-H., et al.: Organic environments on Saturn’s Moon, Titan: simulating chemical reactions and analyzing products by FT-ICR and ion-trap mass spectrometry. Am. Soc. Mass Spectrom. 16, 850–859 (2005)Google Scholar
  22. Szopa, C., Cernogora, G., et al.: PAMPRE: a dusty plasma experiment for Titan’s tholins production and study. Planet. Space Sci. 54, 394–404 (2006)ADSCrossRefGoogle Scholar
  23. Teanby, N.A., Irwin, P.G.J., et al.: Vertical profiles of HCN, HC3N, and C2H2 in Titan’s atmosphere derived from Cassini/CIRS data. Icarus 186(2), 364–384 (2007)ADSCrossRefGoogle Scholar
  24. Teanby, N.A., Irwin, P.G.J., et al.: Mapping Titan’s HCN in the far infra-red: implications for photochemistry. Faraday Discuss. 147(0), 51–64 (2010)ADSCrossRefGoogle Scholar
  25. Vinatier, S., Bézard, B., et al.: Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission: I. Hydrocarbons, nitriles and CO2 vertical mixing ratio profiles. Icarus 205(2), 559–570 (2010)Google Scholar
  26. Vuitton, V., Yelle, R.V., et al.: Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus 191(2), 722–742 (2007)ADSCrossRefGoogle Scholar
  27. Vuitton, V., Lavvas, P., et al.: Negative ion chemistry in Titan’s upper atmosphere. Planet. Space Sci. 57(13), 1558–1572 (2009)ADSCrossRefGoogle Scholar
  28. Vuitton, V., Bonnet, J.-Y., et al.: Very high resolution mass spectrometry of HCN polymers and tholins. Faraday Discuss. 147, 495–508 (2010)ADSCrossRefGoogle Scholar
  29. Waite, J.H. Jr., Young, D.T., et al.: The process of Tholin formation in Titan’s upper atmosphere. Science 316, 870–875 (2007)ADSCrossRefGoogle Scholar
  30. Waite, J.H., Young, D.T., et al.: The source of heavy organics and aerosols in Titan’s atmosphere. Proc. Int. Astron. Union 4(S251), 321–326 (2008)CrossRefGoogle Scholar
  31. Westlake, J.H., Waite, J.H. Jr., et al.: Titan’s ionospheric composition and structure: photochemical modeling of Cassini INMS data. J. Geophys. Res. 117, E01003 (2012)ADSCrossRefGoogle Scholar
  32. Wilson, E.H., Atreya, S.K.: Chemical sources of haze formation in Titan’s atmosphere. Planet. Space Sci. 51, 1017–1033 (2003)ADSCrossRefGoogle Scholar
  33. Yelle, R.V., Vuitton, V., et al.: Formation of NH3 and CH2NH in Titan’s upper atmosphere. Faraday Discuss. 147(0), 31–49 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nathalie Carrasco
    • 1
    Email author
  • Joseph Westlake
    • 2
  • Pascal Pernot
    • 3
  • Hunter WaiteJr.
    • 4
  1. 1.LATMOS, UVSQ-UPMC-CNRSGuyancourtFrance
  2. 2.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA
  3. 3.Laboratoire de Chimie PhysiqueUMR8000 CNRS/Université Paris-SudOrsayFrance
  4. 4.SwRISan AntonioUSA

Personalised recommendations