Advertisement

Distance Geometry in Structural Biology: New Perspectives

  • Thérèse E. Malliavin
  • Antonio Mucherino
  • Michael Nilges
Chapter

Abstract

Proteins are polypeptides of amino acids involved in most of the biological processes. In the last 50 years, the study of their structures at the molecular level revolutioned the vision of biology. The three-dimensional structure of these molecules helps in the identification of their biological function. In this chapter, we focus our attention on methods for structure determination based on distance information obtained by nuclear magnetic resonance (NMR) experiments. We give a few details about this experimental technique and we discuss the quality and the reliability of the information it is able to provide. The problem of finding protein structures from NMR information is known in the literature as the molecular distance geometry problem (MDGP). We review some of the historical and most used methods for solving MDGPs with NMR data. Finally, we give a brief overview of a new promising approach to the MDGP, which is based on a discrete formulation of the problem, and we discuss the perspectives this method could open in structural biology.

Keywords

Nuclear Magnetic Resonance Simulated Annealing Torsion Angle Protein Data Bank Nuclear Magnetic Resonance Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is partially supported by the ANR project ANR-10-BINF-03-01, “Bip:Bip”. TM and MN acknowledge support by the CNRS and the Institut Pasteur.

References

  1. 1.
    Almeida, F., Moraes, A., Neto, F.G.: Overview on protein structure determination by NMR — Historical and future perspectives of the use of distance geometry. In: Mucherino et al, “Distance Geometry: Theory, Methods, and Applications”Google Scholar
  2. 2.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acid Res. 28, 235–242 (2000)CrossRefGoogle Scholar
  3. 3.
    Blumenthal, L.M.: Theory and Application of Distance Geometry. Chelsea, New York (1970)Google Scholar
  4. 4.
    Braun, W., Bösch, C., Brown, L.R., G\(\bar{\mathrm{o}}\), N., Wüthrich, K.: Combined use of proton-proton Overhauser enhancements and a distance geometry algorithm for determination of polypeptide conformations. Application to micelle-bound glucagon. Biochimica et Biophysica Acta 667, 377–396 (1981)CrossRefGoogle Scholar
  5. 5.
    Clore, G.M., Gronenborn, A.M.: Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. Crit. Rev. Biochem. Mol. Biol. 24, 479–564 (1989)CrossRefGoogle Scholar
  6. 6.
    Costa, V., Mucherino, A., Lavor, C., Carvalho, L.M., Maculan, N.: On suitable orders for discretizing molecular distance geometry problems related to protein side chains. In: IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS12), Workshop on Computational Optimization (WCO12), Wroclaw, Poland, September 9–12 (2012)Google Scholar
  7. 7.
    Crippen, G.M.: A novel approach to calculation of conformation: distance geometry. J. Comput. Phys. 24(1), 96–107 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Crippen, G.M., Havel, T.F.: Stable calculation of coordinates from distance information. Acta Crystallographica Section A34, 282–284 (1978)CrossRefGoogle Scholar
  9. 9.
    Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)zbMATHGoogle Scholar
  10. 10.
    Davis, R.T., Ernst, C., Wu, D.: Protein structure determination via an efficient geometric build-up algorithm. BMC Struct. Biol. 10:S7 (2010)CrossRefGoogle Scholar
  11. 11.
    Easthope, P.L., Havel, T.F.: Computational experience with an algorithm for tetrangle inequality bound smoothing. Bull. Math. Biol. 51, 173–194 (1991)MathSciNetGoogle Scholar
  12. 12.
    Engh, R.A., Huber, R.: Accurate bond and angle parameters for X-ray structure refinement. Acta Crystallographica Section A 47, 392–400 (1991)CrossRefGoogle Scholar
  13. 13.
    Eren, T., Goldenberg, D.K., Whiteley, W., Yang, Y.R., Morse, A.S., Anderson, B.D.O., Belhumeur, P.N.: Rigidity, computation, and randomization in network localization. In: IEEE Infocom Proceedings, 2673–2684 (2004)Google Scholar
  14. 14.
    Grishaev, A., Llinas, M.: Protein structure elucidation from NMR proton densities. Proc. Nat. Acad. Sci. USA 99, 6713–6718 (2002)CrossRefGoogle Scholar
  15. 15.
    Guerry, P., Herrmann, T.: Comprehensive automation for NMR structure determination of proteins. Meth. Mol. Biol. 831, 33–56 (1992)Google Scholar
  16. 16.
    Güntert, P.: Automated NMR structure calculation with CYANA. In: Downing, A.K. (ed.) Protein NMR Techniques. Meth. Mol. Biol. 278, 353–378 (2004)Google Scholar
  17. 17.
    Güntert, P., Berndt, K.D., Wüthrich, K.: The program ASNO for computer-supported collection of NOE upper distance constraints as input for protein structure determination. J. Biomol. NMR 3, 601–606 (1993)CrossRefGoogle Scholar
  18. 18.
    Havel, T.F.: Distance geometry. In: Grant, D.M., Harris, R.K. (eds.) Encyclopedia of Nuclear Magnetic Resonance, pp. 1701–1710. Wiley, New York (1995)Google Scholar
  19. 19.
    Havel, T.F., Kunts, I.D., Crippen, G.M.: The theory and practice of distance geometry. Bull. Math. Biol. 45, 665–720 (1983)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Horst, R., Pardalos, P.M.: Handbook of Global Optimization. Springer (1994), http://www.springer.com/mathematics/book/978-0-7923-3120-9
  21. 21.
    Huang, A., Stultz, C.M.: Finding order within disorder: elucidating the structure of proteins associated with neurodegenerative disease. Future Med. Chem. 1, 467–482 (2009)CrossRefGoogle Scholar
  22. 22.
    Janin, J.: Protein-protein docking tested in blind predictions: the CAPRI experiment. Mol. Biosyst. 6, 2351–2362 (2010)CrossRefGoogle Scholar
  23. 23.
    Kirkpatrick, S., Jr. Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Kleywegt, G.J.: Validation of protein models from C α coordinates alone. J. Mol. Biol. 273(2), 371–376 (1997)CrossRefGoogle Scholar
  25. 25.
    Kline, A.D., Braun, W., Wüthrich, K.: Studies by 1 H nuclear magnetic resonance and distance geometry of the solution conformation of the a-amylase inhibitor Tendamistat. J. Mol. Biol. 189, 377–382 (1986)CrossRefGoogle Scholar
  26. 26.
    Koning, T.M., Davies, R.J., Kaptein, R.: The solution structure of the intramolecular photoproduct of d(TpA) derived with the use of NMR and a combination of distance geometry and molecular dynamics. Nucleic Acids Res. 18, 277–284 (1990)CrossRefGoogle Scholar
  27. 27.
    Kuszewski, J., Nilges, M., Brünger, A.T.: Sampling and efficiency of metric matrix distance geometry: a novel partial metrization algorithm. J. Biomol. NMR 2, 33–56 (1992)CrossRefGoogle Scholar
  28. 28.
    Lavor, C., Lee, J., Lee-St.John, A., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. 6(4), 783–796 (2012)Google Scholar
  29. 29.
    Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lavor, C., Liberti, L., Mucherino, A.: On the solution of molecular distance geometry problems with interval data. In: IEEE Conference Proceedings, International Workshop on Computational Proteomics (IWCP10), International Conference on Bioinformatics & Biomedicine (BIBM10), Hong Kong, 77–82 (2010)Google Scholar
  32. 32.
    Lavor, C., Liberti, L., Mucherino, A.: The interval Branch-and-Prune algorithm for the discretizable molecular distance geometry problem with inexact distances, to appear in J. Global Optim. (2012), http://link.springer.com/article/10.1007\%2Fs10898-011-9799-6
  33. 33.
    Liberti, L., Lavor, C., Maculan, N.: A Branch-and-Prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular Distance Geometry Methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2010)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Liberti, L., Masson, B., Lavor, C., Mucherino, A.: Branch-and-Prune trees with bounded width. In: Proceedings of the 10th Cologne-Twente Workshop on Graphs and Combinatorial Optimization (CTW11), Rome, Italy, 189–193 (2011)Google Scholar
  36. 36.
    Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications, Tech. Rep. 1205.0349v1 [q-bio.QM], arXiv (2012)Google Scholar
  37. 37.
    Mucherino, A., Costantini, S., di Serafino, D., D’Apuzzo, M., Facchiano, A., Colonna, G.: Towards a Computational Description of the Structure of all-alpha Proteins as Emergent Behaviour of a Complex System. Comput. Biol. Chem. 32(4), 233–239 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Mucherino, A., Seref, O.: Modeling and solving real life global optimization problems with meta-heuristic methods. In: Papajorgji, P.J., Pardalos, P.M. (eds.) Advances in Modeling Agricultural Systems, pp. 403–420 (2008) http://link.springer.com/chapter/10.1007\%2F978-0-387-75181-8_19
  39. 39.
    Mucherino, A., Liberti, L., Lavor, C., Maculan, N.: Comparisons between an exact and a meta-heuristic algorithm for the molecular distance geometry problem. In: ACM Conference Proceedings, Genetic and Evolutionary Computation Conference (GECCO09), Montréal, Canada, 333–340 (2009)Google Scholar
  40. 40.
    Mucherino, A., Papajorgji, P., Pardalos, P.M.: Data Mining in Agriculture. Springer, New York (2009)zbMATHCrossRefGoogle Scholar
  41. 41.
    Mucherino, A., Lavor, C., Malliavin, T., Liberti, L., Nilges, M., Maculan, N.: Influence of pruning devices on the solution of molecular distance geometry problems. In: Pardalos, P.M., Rebennack, S. (eds.) Lecture Notes in Computer Science 6630, Proceedings of the 10th International Symposium on Experimental Algorithms (SEA11), Crete, Greece, 206–217 (2011)Google Scholar
  42. 42.
    Mucherino, A., Lavor, C., Liberti, L.: Exploiting symmetry properties of the discretizable molecular distance geometry problem. J. Bioinformatics Comput. Biol. 10(3), 1242009 (2012)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem, Optim. Lett. 6(8), 1671–1686 (2012)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Nazareth, J.L.: Conjugate gradient method. Wiley Interdiscipl. Rev. Comput. Stat. 3(1), 348–353 (2009)CrossRefGoogle Scholar
  45. 45.
    Nilges, M.: Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. J. Mol. Biol. 245, 645–660 (1995)Google Scholar
  46. 46.
    Nilges, M., Clore, G.M., Gronenborn, A.M.: Determination of three-Dimensional structures of proteins from interproton distance data by hybrid distance geometry – dynamical simulated annealing calculations. Fed. Eur. Biochem. Soc. 229, 317–324 (1988)CrossRefGoogle Scholar
  47. 47.
    Nilges, M., Marcias, M.J., O’Donoghue, S.I.: Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from β-spectrin. J. Mol. Biol. 269, 408–422 (1997)CrossRefGoogle Scholar
  48. 48.
    Rieping, W., Habeck, M., Bardiaux, B., Bernard, A., Malliavin, T.E., Nilges, M.: ARIA2: Automated NOE assignment and data integration in NMR structure calculations. Bioinformatics 23(3), 381–382 (2007)CrossRefGoogle Scholar
  49. 49.
    Sali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993)CrossRefGoogle Scholar
  50. 50.
    Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)Google Scholar
  51. 51.
    Shen, Y., Delaglio, F., Cornilescu, G., Bax, A.: TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009)CrossRefGoogle Scholar
  52. 52.
    Spedding, M.: Resolution of controversies in drug/receptor interactions by protein structure. Limitations and pharmacological solutions. Neuropharmacology 60, 3–6 (2011)CrossRefGoogle Scholar
  53. 53.
    Weber, P.L., Morrison, R., Hare, D.: Determining stereo-specific 1H nuclear magnetic resonance assignments from distance geometry calculations. J. Mol. Biol. 204, 483–487 (1988)CrossRefGoogle Scholar
  54. 54.
    Wishart, D.S., Sykes, B.D.: The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 4, 171–180 (1994)CrossRefGoogle Scholar
  55. 55.
    Wu, D., Wu, Z.: An updated geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global Optim. 37, 661–673 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Wüthrich, K., Billeter, M., Braun, W.: Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J. Mol. Biol. 169(4), 949–961 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Thérèse E. Malliavin
    • 1
  • Antonio Mucherino
    • 2
  • Michael Nilges
    • 1
  1. 1.Institut PasteurParisFrance
  2. 2.IRISAUniversity of Rennes 1RennesFrance

Personalised recommendations