The Discovery of GW Bodies

Part of the Advances in Experimental Medicine and Biology book series (volume 768)


Human autoantibodies were a key to the discovery of GW bodies and their integral protein, GW182. This publication marks the tenth anniversary of the discovery of GW182. As it turns out, the discovery of GW182 was quite timely because it coincided with the elucidation of the RNA interference (RNAi) pathway, which is now known to have a major role in post-transcriptional gene regulation. Following our publication of the essential features of GW182 in 2002, laboratories from around the world began investigations that led to the elucidation of the role of GW182 in RNAi and other pathways of mRNA processing and degradation. This chapter reviews the discovery of GW182 and the description of GWB and some of the observations that followed that still remain to be elucidated.



The authors would like to acknowledge the efforts and expertise of ­numerous colleagues, collaborators, trainees and technologists.

Trainees: Dr. T. Eystathioy, Dr. Z. Yang, Dr. A. Jakymiw, Dr. S. Lian, Dr. S. Li, Dr. J. Moser, Dr. K. Pauley, Dr. L. Luft, Dr. R. Bhanji, K. Griffith, Dr. L. Stinton, Dr. K. Takeuchi.

Collaborators: Drs. D. Zochodne, M. Woods, J. Keene, S. Tenenbaum, B. Séraphin, N. Cougot, N. Kedersha, D. Bloch, L.E.C. Andrade, M. Mahler, M. Satoh, R. Mydlarski, L. Browder.

Technologists: John Hamel, Meifeng Zhang, Haiyan Hou, Maggie Lin, Jane Yang, Carol Peebles.


  1. Andrade LE, Chan EKL, Raska I, Peebles CL, Roos G, Tan EM (1991) Human autoantibody to a novel protein of the nuclear coiled body immunological characteristics and cDNA cloning of p80-coilin. J Exp Med 173:1407–1419PubMedCrossRefGoogle Scholar
  2. Antic D, Keene JD (1998) Messenger ribonucleoprotein complexes containing human ELAV proteins: interactions with cytoskeleton and translational apparatus. J Cell Sci 111:183–197PubMedGoogle Scholar
  3. Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD (1997) A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol 136:761–773PubMedCrossRefGoogle Scholar
  4. Batra R, Charizanis K, Swanson MS (2010) Partners in crime: bidirectional transcription in unstable microsatellite disease. Hum Mol Genet 19:R77–R82PubMedCrossRefGoogle Scholar
  5. Bhanji R, Eystathioy T, Chan EKL, Bloch DB, Fritzler MJ (2007) Clinical and serological features of patients with autoantibodies to GW/P bodies. Clin Immunol 123:247–256CrossRefGoogle Scholar
  6. Bosch X, Guilabert A, Font J (2006) Antineutrophil cytoplasmic antibodies. Lancet 368:404–418PubMedCrossRefGoogle Scholar
  7. Brouwer R, Pruijn GJM, Van Venrooij JV (2001) The human exosome: an autoantigenic complex of exoribonucleases in myositis and scleroderma. Arthritis Res 3:102–106PubMedCrossRefGoogle Scholar
  8. Brouwer R, Egberts WV, Hengstman GJD, Rajimakers R, van Engelen BGM, Seelig HP, Renz M, Mierau R, Genth E, Pruijn GJM, Van Venrooij JV (2002) Autoantibodies directed to novel components of the PM/Scl complex, the human exosome. Arthritis Res 4:134–138PubMedCrossRefGoogle Scholar
  9. Busch H, Ochs RL, Smith HC, Spector DL (1985) Nuclear antigenic structures. Scand J Rheumatol 56:10–21CrossRefGoogle Scholar
  10. Chan JYC, Lerman MI, Prabhakar BS, Isozaki O, Santisteban P, Kuppers RC, Oates EL, Notkins AL, Kohn LD (1989) Cloning and characterization of a cDNA that encodes a 70-kDa novel human thyroid autoantigen. J Biol Chem 264:3651–3654PubMedGoogle Scholar
  11. Courvalin J-C, Lassoued K, Bartnik E, Blobel G, Wozniak RW (1990) The 210-kD nuclear envelope polypeptide recognized by human autoantibodies in primary biliary cirrhosis is the major glycoprotein of the nuclear pore. J Clin Invest 86:279–285PubMedCrossRefGoogle Scholar
  12. Dagenais A, Bibo-Hardy V, Senécal J-L (1988) A novel autoantibody causing a peripheral fluorescent antinuclear antibody pattern is specific for nuclear pore complexes. Arthritis Rheum 31:1322–1327PubMedCrossRefGoogle Scholar
  13. Di Prospero NA, Fischbeck KH (2005) Therapeutics development for triplet repeat expansion diseases. Nat Rev Genet 6:756–765PubMedCrossRefGoogle Scholar
  14. Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321PubMedCrossRefGoogle Scholar
  15. Earnshaw WC, Machlin PS, Bordwell BJ, Rothfield NF, Cleveland DW (1987) Analysis of anticentromere autoantibodies using cloned autoantigen CENP-B. Proc Natl Acad Sci USA 84:4979–4983PubMedCrossRefGoogle Scholar
  16. Elkon KB, Parnassa AP, Foster CL (1985) Lupus autoantibodies target ribosomal P proteins. J Exp Med 162:459–572PubMedCrossRefGoogle Scholar
  17. Enarson P, Rattner JB, Ou Y, Miyachi K, Horigome T, Fritzler MJ (2004) Autoantigens of the nuclear pore complex. J Mol Med 82:423–433PubMedCrossRefGoogle Scholar
  18. Espinosa A, Zhou W, Ek M, Hedlund M, Brauner S, Popovic K, Horvath L, Wallerskog T, Oukka M, Nyberg F, Kuchroo VK, Wahren-Herlenius M (2006) The Sjogren’s syndrome-associated autoantigen Ro52 is an E3 ligase that regulates proliferation and cell death. J Immunol 176:6277–6285PubMedGoogle Scholar
  19. Eystathioy T, Jakymiw A, Fujita DJ, Fritzler MJ, Chan EKL (1999) Human autoantibodies to a novel Golgi protein golgin-67: high similarity with golgin-95/gm 130 autoantigen. J Autoimmun 14:179–187CrossRefGoogle Scholar
  20. Eystathioy T, Chan EKL, Tenenbaum SA, Keene JD, Griffith KJ, Fritzler MJ (2002) A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 13:1338–1351PubMedCrossRefGoogle Scholar
  21. Eystathioy T, Chan EKL, Mahler M, Luft LM, Fritzler ML, Fritzler MJ (2003a) A panel of monoclonal antibodies to cytoplasmic GW bodies and the mRNA binding protein GW182. Hybrid Hybridomics 22:79–86PubMedCrossRefGoogle Scholar
  22. Eystathioy T, Chan EKL, Yang Z, Takeuchi K, Mahler M, Luft LM, Zochodne DW, Fritzler MJ (2003b) Clinical and serological associations of autoantibodies to a novel cytoplasmic autoantigen, GW182 and GW bodies. J Mol Med 81:811–818PubMedCrossRefGoogle Scholar
  23. Eystathioy T, Jakymiw A, Chan EKL, Séraphin B, Cougot N, Fritzler MJ (2003c) The GW182 protein co-localizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA 9:1171–1173PubMedCrossRefGoogle Scholar
  24. Francoeur AM, Peebles CL, Gomper PT, Tan EM (1986) Identification of Ki (Ku, p70/p80) autoantigens and analysis of anti-Ki autoantibody reactivity. J Immunol 136:1648–1653PubMedGoogle Scholar
  25. Fritzler MJ (1986) Autoantibody testing: procedures and significance in systemic rheumatic diseases. Methods Achiev Exp Pathol 12:224–260PubMedGoogle Scholar
  26. Fritzler MJ, Kinsella TD (1980) The CREST syndrome: a distinct serologic entity with anticentromere antibodies. Am J Med 69:520–525PubMedCrossRefGoogle Scholar
  27. Fritzler MJ, Manns MP (2002) Anti-mitochondrial antibodies. Clin Appl Immunol Rev 3:87–113CrossRefGoogle Scholar
  28. Fritzler MJ, Etherington J, Sokoluk C, Kinsella TD, Valencia DW (1984) Antibodies from patients with autoimmune disease react with a cytoplasmic antigen in the Golgi apparatus. J Immunol 132:2904–2908PubMedGoogle Scholar
  29. Fritzler MJ, Hamel JC, Chan EKL (1992) Molecular characterization of an autoantigen of systemic lupus erythematosus. A unique an complete cDNA encoding a 95 kD protein of the Golgi complex. Arthritis Rheum 35:169Google Scholar
  30. Fritzler MJ, Hamel JC, Ochs RL, Chan EKL (1993) Molecular characterization of two human autoantigens: unique cDNAs encoding 95- and 160-kD proteins of a putative family in the Golgi complex. J Exp Med 178:49–62PubMedCrossRefGoogle Scholar
  31. Fritzler MJ, Lung C-C, Hamel JC, Griffith K, Chan EKL (1995) Molecular characterization of golgin-245: a novel Golgi complex protein containing a granin signature. J Biol Chem 270:31262–31268PubMedCrossRefGoogle Scholar
  32. Fritzler MJ, Stinton LM, Chan EKL (2007) Autoantibodies to cytoplasmic autoantigens in endosomes, exosomes and the Golgi complex. In: Conrad K, Chan EKL, Fritzler MJ, Sack U, Shoenfeld Y, Wiik A (eds) From etiopathogenesis to the prediction of autoimmune diseases: relevance of autoantibodies. Autoantigens, autoantibodies and autoimmunity. Proceedings 8th Dresden Symposium on Autoantibodies. Pabst Science Publishers, Lengerich, Germany, pp 194–209Google Scholar
  33. Fritzler MJ, Rattner JB, Luft LM, Edworthy SM, Casiano CA, Peebles C, Mahler M (2010) Historical perspectives on the discovery and elucidation of autoantibodies to centromere proteins (CENP) and the emerging importance of antibodies to CENP-F. Autoimmun Rev 10:194–200PubMedCrossRefGoogle Scholar
  34. Gavanescu I, Pihan G, Halilovic E, Szomolanyi-Tsuda E, Welsh RM, Doxsey S (2004) Mycoplasma infection induces a scleroderma-like centrosome autoantibody response in mice. Clin Exp Immunol 137:288–297PubMedCrossRefGoogle Scholar
  35. Gordon J, Towbin H, Rosenthal M (1982) Antibodies directed against ribosomal protein determinants in the sera of patients with connective tissue diseases. J Rheumatol 9:247–252PubMedGoogle Scholar
  36. Griffith KJ, Chan EKL, Hamel JC, Miyachi K, Fritzler MJ (1997) Molecular characterization of a novel 97 kDa Golgi complex autoantigen recognized by autoimmune antibodies from patients with Sjögren’s syndrome. Arthritis Rheum 40:1693–1702PubMedCrossRefGoogle Scholar
  37. Griffith KJ, Ryan JP, Senécal J-L, Fritzler MJ (2002) The cytoplasmic linker protein CLIP-170 is a human autoantigen. Clin Exp Immunol 127:533–538PubMedCrossRefGoogle Scholar
  38. Hardin JA, Rahn DR, Shen C, Lerner MR, Wolin SL, Rosa MD, Steitz JA (1982) Antibodies from patients with connective tissue diseases bind specific subsets of cellular RNA-protein particles. J Clin Invest 70:141–147PubMedCrossRefGoogle Scholar
  39. Jakymiw A, Pauley KM, Li S, Ikeda K, Lian S, Eystathioy T, Satoh M, Fritzler MJ, Chan EKL (2007) The role of GW/P bodies in RNA processing and silencing. J Cell Sci 120:1317–1323PubMedCrossRefGoogle Scholar
  40. Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884PubMedCrossRefGoogle Scholar
  41. Keene JD (2001) Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and proteome. Proc Natl Acad Sci USA 98:7018–7024PubMedCrossRefGoogle Scholar
  42. Keene JD, Tenenbaum SA (2002) Eukaryotic mRNPs may represent post-transcriptional operons. Mol Cell 9:1161–1167PubMedCrossRefGoogle Scholar
  43. Kooy J, Toh B-H, Pettit JM, Erlich R, Gleeson PA (1992) Human autoantibodies as reagents to conserved Golgi components. J Biol Chem 267:20255–20263PubMedGoogle Scholar
  44. Lerner MR, Steitz JA (1979) Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 76:5495–5499PubMedCrossRefGoogle Scholar
  45. Lerner MR, Steitz JA (1981) Snurps and scyrps. Cell 25:298–300PubMedCrossRefGoogle Scholar
  46. Lerner EA, Lerner MR, Hardin JA, Janeway CA, Steitz JA (1982) Deciphering the mysteries of RNA-containing lupus antigens. Arthritis Rheum 25(7):761–766PubMedCrossRefGoogle Scholar
  47. Li S, Lian SL, Moser JJ, Fritzler ML, Fritzler MJ, Satoh M, Chan EKL (2008) Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago-2-mediated silencing. J Cell Sci 121:4134–4144PubMedCrossRefGoogle Scholar
  48. Lindstedt AD, Hauri HP (1993) Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa. Mol Biol Cell 4:679–693Google Scholar
  49. Luft LM (2005) Thesis Dissertation: Characterization of GWBs in Breast Cancer. University of Calgary.Google Scholar
  50. Mahler M, Raijmakers R (2007) Novel aspects of autoantibodies to the PM/Scl complex: clinical, genetic and diagnostic insiights. Autoimmun Rev 6:432–437PubMedCrossRefGoogle Scholar
  51. Margolis RL, Abraham MR, Gatchell SB, Li SH, Kidawa AS, Breschel TS, Stine OC, Callahan C, Mcinnis MG, Ross CA (1997) cDNAs with long CAG trinucleotide repeats from human brain. Hum Genet 100:114–122PubMedCrossRefGoogle Scholar
  52. McCarty GA, Valencia DW, Fritzler MJ, Barada FA (1981) A unique antinuclear antibody staining only the mitotic spindle apparatus. N Engl J Med 305:703PubMedCrossRefGoogle Scholar
  53. Meroni PL, de Bartolo G, Barcellini W, Riboldi PS, Basile R, Betterle C, Zanussi C (1984) Anti-ribosomal ribonucleoprotein autoantibodies in systemic lupus erythematosus. J Clin Immunol 4:45–54PubMedCrossRefGoogle Scholar
  54. Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM (1980) Autoantibody to centromere (Kinetochore) in scleroderma sera. Proc Natl Acad Sci USA 77:1627–1631PubMedCrossRefGoogle Scholar
  55. Moser JJ, Fritzler MJ (2010a) Cytoplasmic ribonucleoprotein (RNP) bodies and their relationship to GW/P bodies. Int J Biochem Cell Biol 42:828–843PubMedCrossRefGoogle Scholar
  56. Moser JJ, Fritzler MJ (2010b) The MicroRNA and MessengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells. PLoS One 5:e13445PubMedCrossRefGoogle Scholar
  57. Moser JJ, Eystathioy T, Chan EKL, Fritzler MJ (2007) Markers of mRNA stabilization and degradation, and RNAi within astrocytoma GW bodies. J Neurosci Res 85:3619–3631PubMedCrossRefGoogle Scholar
  58. Moser JJ, Chan EKL, Fritzler MJ (2009) Optimization of immunoprecipitation-western blot analysis in detecting GW182-associated components of GW/P bodies. Nat Protoc 4:674–685PubMedCrossRefGoogle Scholar
  59. Mu FT, Callaghan JM, Steele-Mortimer HS, Parton RG, Campbell PL, McCluskey J, Yeo JP, Tock EPC, Toh BH (1995) EEA1, an early endosomal protein. J Biol Chem 270:13503–13511PubMedCrossRefGoogle Scholar
  60. Nakamura RM, Peebles CL, Molden DP, Tan EM (1984) Advances in laboratory tests for autoantibodies to nuclear antigens in systemic rheumatic diseases. Lab Med 15:190–198Google Scholar
  61. Okano Y, Steen VD, Medsger TA Jr (1992) Autoantibody to U3 nucleolar ribonucleoprotein (fibrillarin) in patients with systemic sclerosis. Arthritis Rheum 35:95–100PubMedCrossRefGoogle Scholar
  62. Ou Y, Enarson P, Rattner JB, Barr W, Fritzler MJ (2004) The nuclear pore complex protein Tpr is a common autoantigen in sera that demonstrate nuclear envelope staining by indirect immunofluorescence. Clin Exp Immunol 136:379–387PubMedCrossRefGoogle Scholar
  63. Pauley KM, Eystathioy T, Jakymiw A, Hamel JC, Fritzler MJ, Chan EKL (2006) Formation of GW bodies is a consequence of microRNA genesis. EMBO Rep 7:904–910PubMedCrossRefGoogle Scholar
  64. Price CM, McCarty GA, Pettijohn DE (1984) NuMA protein is a human autoantigen. Arthritis Rheum 27:774–779PubMedCrossRefGoogle Scholar
  65. Raijmakers R, Renz M, Wiemann C, Egberts WV, Seelig HP, Van Venrooij WJ, Pruijn GJM (2004) PM-Scl-75 is the main autoantigen in patients with the polymyositis/scleroderma overlap syndrome. Arthritis Rheum 50:565–569PubMedCrossRefGoogle Scholar
  66. Raska L, Ochs RL, Andrade LEC, Chan EKL, Burlingame R, Peebles C, Gruol D, Tan EM (1990) Association between the nucleolus and the coiled body. J Struct Biol 104:120–127PubMedCrossRefGoogle Scholar
  67. Rattner JB, Wang T, Mack G, Valencia D, Fritzler MJ (1991) Identification of a novel human centromere protein, CENP-F. J Cell Biol 115(3):93aGoogle Scholar
  68. Rattner JB, Rees J, Arnett FC, Reveille JD, Goldstein R, Fritzler MJ (1996) The centromere kinesin-like protein, CENP-E an autoantigen in systemic sclerosis. Arthritis Rheum 39:1355–1361PubMedCrossRefGoogle Scholar
  69. Rattner JB, Mack G, Fritzler MJ (1998) Autoantibodies to components of the mitotic spindle apparatus. Mol Biol Rep 25:143–155PubMedCrossRefGoogle Scholar
  70. Reddy R, Tan EM, Henning D, Nohga K, Busch H (1983) Detection of a nucleolar 7-2 ribonucleoprotein and a cytoplasmic 8-2 ribonucleoprotein with autoantibodies from patients with scleroderma. J Biol Chem 258:1383–1386PubMedGoogle Scholar
  71. Reeves WH, Sthoeger ZM (1989) Molecular cloning of cDNA encoding the p70 (Ku) lupus autoantigen. J Biol Chem 264:5047–5052PubMedGoogle Scholar
  72. Reimer G (1990) Autoantibodies against nuclear, nucleolar, and mitochondrial antigens in systemic sclerosis (scleroderma). Rheum Dis Clin North Am 16:169–183PubMedGoogle Scholar
  73. Reimer G, Raska I, Tan EM, Scheer U (1987) Human autoantibodies: probes for nucleolus structure and function. Virchows Arch B 54:131–143PubMedCrossRefGoogle Scholar
  74. Ren Y, Busch RK, Perlaky L, Busch H (1998) The 58-kDa microspherule protein (MSP58), a nucleolar protein, interacts with nucleolar protein p120. Eur J Biochem 253:734–742PubMedCrossRefGoogle Scholar
  75. Rodriguez-Sanchez JL, Gelpi C, Juarez C, Hardin JA (1987) A new autoantibody in scleroderma that recognizes a 90-kDa component of the nucleolus-organizing region of chromatin. J Immunol 8:2579–2584Google Scholar
  76. Saitoh H, Tomkiel J, Cooke CA, Ratrie H, Maurer M, Rothfield NF, Earnshaw WC (1992) CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70:115–125PubMedCrossRefGoogle Scholar
  77. Seelig HP, Schranz P, Schroter H, Wiemann C, Renz M (1994) Macrogolgin-A new 376 kD Golgi complex outer membrane protein as target of antibodies in patients with rheumatic diseases and HIV infections. J Autoimmun 7:67–91PubMedCrossRefGoogle Scholar
  78. Selak S, Schoenroth L, Senécal J-L, Fritzler MJ (1999) Early endosome antigen 1: an autoantigen associated with neurological diseases. J Invest Med 47:311–318Google Scholar
  79. Senécal J-L, Oliver J, Rothfield N (1985) Anti-cytoskeletal autoantibodies in the connective tissue diseases. Arthritis Rheum 28:889–898PubMedCrossRefGoogle Scholar
  80. Sim S, Weinberg DE, Fuchs G, Choi K, Chung J, Wolin SL (2009) The subcellular distribution of an RNA quality control protein, the Ro autoantigen, is regulated by noncoding Y RNA binding. Mol Biol Cell 20:1555–1564PubMedCrossRefGoogle Scholar
  81. Stinton LM, Eystathioy T, Selak S, Chan EKL, Fritzler MJ (2004) Autoantibodies to protein transport and messenger RNA processing pathways: endosomes, lysosomes, Golgi complex, proteasomes, assemblyosomes, exosomes and GW Bodies. Clin Immunol 110:30–44PubMedCrossRefGoogle Scholar
  82. Stinton LM, Selak S, Fritzler MJ (2005) Identification of GRASP-1 as a novel 97 kDa autoantigen localized to endosomes. Clin Immunol 116:108–117PubMedCrossRefGoogle Scholar
  83. Tenenbaum SA, Carson CC, Lager PJ, Keene JD (2000) Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci USA 97:14085–14090PubMedCrossRefGoogle Scholar
  84. Tenenbaum SA, Lager PJ, Carson CC, Keene JD (2002) Ribonomics: identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods 26:191–198PubMedCrossRefGoogle Scholar
  85. Wada K, Kamitani T (2006) Autoantigen Ro52 is an E3 ubiquitin ligase. Biochem Biophys Res Commun 339:415–421PubMedCrossRefGoogle Scholar
  86. Wesierska-Gadek J, Hohenauer H, Hitchman E, Penner E (1995) Autoantibodies from patients with primary biliary cirrhosis preferentially react with the amino-terminal domain of nuclear pore complex glycoprotein gp210. J Exp Med 182:1159–1162PubMedCrossRefGoogle Scholar
  87. Whitehead CM, Winkfein RJ, Fritzler MJ, Rattner JB (1996) The spindle kinesin-like protein HsEg5 is an autoantigen in systemic lupus erythematosus (SLE). Arthritis Rheum 39:1635–1642PubMedCrossRefGoogle Scholar
  88. Whitehead CM, Winkfein RJ, Fritzler MJ, Rattner JB (1997) ASE-1: a novel protein of the fibrillar centres of the nucleolus and nucleolus organizer region of mitotic chromosomes. Chromosoma 106:493–502PubMedCrossRefGoogle Scholar
  89. Wiik A (2009) Clinical and pathophysiological significance of anti-neutrophil cytoplasmic autoantibodies in vasculitis syndromes. Mod Rheumatol 19:590–599PubMedCrossRefGoogle Scholar
  90. Xuereb JH, MacMillan JC, Snell R, Davies P, Harper PS (1996) Neuropathological diagnosis and CAG repeat expansion in Huntington’s disease. J Neurol Neurosurg Psychiatry 60:78–81PubMedCrossRefGoogle Scholar
  91. Yang Z, Jakymiw A, Wood MR, Eystathioy T, Rubin RL, Fritzler MJ, Chan EKL (2004) GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation. J Cell Sci 117:5567–5578PubMedCrossRefGoogle Scholar
  92. Zahn R (2003) The octapeptide repeats in mammalian prion protein constitute a pH-dependent folding and aggregation site. J Mol Biol 334:477–488PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversity of CalgaryCalgaryCanada
  2. 2.Department of Oral Biology, Health Science CenterUniversity of FloridaGainesvilleUSA

Personalised recommendations