Nurse Scheduling Problem: An Integer Programming Model with a Practical Application

  • Neng Fan
  • Syed Mujahid
  • Jicong Zhang
  • Pando Georgiev
  • Petraq Papajorgji
  • Ingrida Steponavice
  • Britta Neugaard
  • Panos M. Pardalos
Chapter

Abstract

We use a binary integer programming model to formulate and solve a nurse scheduling problem (NSP) which maximally satisfies nurse preferences. In a practical application of a VA hospital, besides considering the scheduling of two types of nurses (registered nurses and licensed practical nurses), two other types of employees (nursing assistants and health care techs), one nurse manager, and a clinical nurse leader are also included in our model. Most of these employees are working full-time. In addition, we distinguish the schedule of weekdays and weekends with different requirements and different preferences for employees. Besides the requirements for each shift, we consider requirements for specific employees in some shifts in practical situations. The seven shifts each day do not necessarily have the same length in our model. Vacation time of employees is also considered in our model. Thus, the requirements for nurse scheduling are complicated and the objective is to maximize the satisfaction of preferred schedules of all these employees, including both nurses and other staffs. The presented model is complex, but efficiently solvable, satisfying the set of requirements in a particular application in a VA hospital.

References

  1. 1.
    Abernathy, W., Baloff, N., Hershey, J., Wandel, S.: A three-stage manpower planning and scheduling model-a service-sector example. Oper. Res. 21(3), 693–711 (1973)CrossRefGoogle Scholar
  2. 2.
    Beliën, J., Demeulemeester, E.: A branch-and-price approach for integrating nurse and surgery scheduling. Eur. J. Oper. Res. 189(3), 652–668 (2008)MATHCrossRefGoogle Scholar
  3. 3.
    Burke, E.K., Bb N.N., De Causmaecker, P.: Fitness evaluation for nurse scheduling problems. Proceedings of the 2001 IEEE Congress on Evolutionary Computation, Seoul, Korea, pp. 1139–1146 (2001)Google Scholar
  4. 4.
    Burke, E., De Causmaecker, P., Berghe, G., Van Landeghem, H.: The state of the art of nurse rostering. J. Sched. 7, 441–499 (2004)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cheang, H., Lim, A., Rodrigues, B.: Nurse rostering problems-a bibliographic survey. Eur. J. Oper. Res. 151, 447–460 (2003)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chern, C.-C., Chien, P.-S., Chen, S.-Y.: A heuristic algorithm for the hospital health examination scheduling problem. Eur. J. Oper. Res. 186(3), 1137–1157 (2008)MATHCrossRefGoogle Scholar
  7. 7.
    ILOG CPLEX 11.0 Users Manual, 2007.Google Scholar
  8. 8.
    Duenas, A., Tutuncu, G.Y., Chilcott, J.B.: A genetic algorithm approach to the nurse scheduling problem with fuzzy preferences. IMA J. Manag. Math. 20, 369–383 (2009)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ferland, J., Berrada, I., Nabli, I., Ahoid, B., Michelon, P., Gascon, V., Gagne, E.: Generalized assignment type goal programming problem: application to nurse scheduling. J. Heuristics 7, 391–413 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    De Grano, M.L., Medeiros, D.J., Eitel, D.: Accommodating individual preferences in nurse scheduling via auctions and optimization. Health Care Manage Sci. 12, 228–242 (2009)CrossRefGoogle Scholar
  11. 11.
    Gutjahr, W.J., Rauner, M.S.: An ACO algorithm for a dynamic regional nurse-scheduling problem in Austria. Comput. Oper. Res. 34(3), 642–666 (2007)MATHCrossRefGoogle Scholar
  12. 12.
    Jaumard, B., Semet, F., Vover, T.: A generalized linear programming model for nurse scheduling. Eur. J. Oper. Res. 107, 1–18 (1998)MATHCrossRefGoogle Scholar
  13. 13.
    Mohan, S.: Scheduling part-time personnel with availability restrictions and preferences to maximize employee satisfaction. Math. Comput. Model. 48(11–12), 1806–1813 (2008)MATHCrossRefGoogle Scholar
  14. 14.
    Pardalos, P.M., Resende, M.: Handbook of Applied Optimization, Oxford University Press (2002).Google Scholar
  15. 15.
    Topaloglu, S., Selim, H.: Nurse scheduling using fuzzy modeling approach Fuzzy Sets and Systems, Corrected Proof, Available online 15 Oct 2009 (in press).Google Scholar
  16. 16.
    Tsai, C.-C., Li, S.H.A.: A two-stage modeling with genetic algorithms for the nurse scheduling problem. Expert Syst. Appl. 36(5), 9506–9512 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Vanhoucke, M., Maenhout, B.: On the characterization and generation of nurse scheduling problem instances. Eur. J. Oper. Res. 196(2), 457–467 (2009)MATHCrossRefGoogle Scholar
  18. 18.
    Warner, D.M.: Scheduling nursing personnel according to nursing preference: A mathematical programming approach. Oper. Res. 24:842–856, 1976MATHCrossRefGoogle Scholar
  19. 19.
    Wright, P.D., Bretthauer, K.M., Cote, M.J.: Reexamining the nurse scheduling problem: staffing ratios and nursing shortages. Decis. Sci. 37(1), 29–70 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Neng Fan
    • 1
  • Syed Mujahid
    • 2
  • Jicong Zhang
    • 3
  • Pando Georgiev
    • 2
  • Petraq Papajorgji
    • 2
  • Ingrida Steponavice
    • 4
  • Britta Neugaard
    • 5
    • 6
  • Panos M. Pardalos
    • 2
  1. 1.Department of Systems and Industrial EngineeringUniversity of ArizonaTucsonUSA
  2. 2.Department of Industrial and Systems Engineering, Center for Applied OptimizationUniversity of FloridaGainesvilleUSA
  3. 3.Functional Neuroscience and Neurosurgery Laboratory, Department of Neurology/Neurosurgery, School of MedicineThe Johns Hopkins UniversityBaltimoreUSA
  4. 4.Department of Mathematical Information TechnologyUniversity of JyvaskylaJyvaskylaFinland
  5. 5.James A. Haley VAMCTampaUSA
  6. 6.College of Public HealthUniversity of South FloridaTampaUSA

Personalised recommendations