Powder Vaccines for Pulmonary Delivery

  • Tom Jin
  • Eric Tsao
Part of the Immunomics Reviews: book series (IMMUN, volume 5)


Spray drying represents an elegant one-step process for generating powder products with unique particle characteristics. Respiratory delivery of powder vaccines for the prevention of infectious diseases has shown great promise. Pulmonary delivery using powder vaccine aerosols is an approach to immunization that offers advantages over the use of injection in terms of both delivery technology and vaccine formulation. Powder vaccines for needle-free delivery have been successfully produced during the past decade. The essential elements for the preparation of a powder vaccine through spray drying are reviewed in this chapter. For example, the screening of formulations, the spray dryers from laboratory scale to aseptic manufacturing facilities, and the selection of dry powder inhalers (DPIs) for pulmonary delivery. The advantages and challenges of manufacturing powder vaccines are also discussed.


Spray Dryer Measle Vaccine Vaccine Formulation Mass Vaccination Vaccine Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors appreciate Barbara Shepherd for her critical review of the manuscript and thoughtful suggestions. This publication was supported by the Bill & Melinda Gates Foundation.


  1. 1.
    WHO (2010) Best practices for injections and related procedures toolkit. WHO/EHT/10.02Google Scholar
  2. 2.
    Garcia-Contreras L, Wong YL et al (2008) Immunization by a bacterial aerosol. Proc Natl Acad Sci U S A 105(12):4656–4660PubMedCrossRefGoogle Scholar
  3. 3.
    Ohtake S, Martin RA et al (2010) Heat-stable measles vaccine produced by spray drying. Vaccine 28(5):1275–1284PubMedCrossRefGoogle Scholar
  4. 4.
    Jin TH, Tsao E et al (2010) Stabilizing formulations for inhalable powders of an adenovirus 35-vectored tuberculosis (TB) vaccine (AERAS-402). Vaccine 28(27):4369–4375PubMedCrossRefGoogle Scholar
  5. 5.
    Bell JH, Hartley PS et al (1971) Dry powder aerosols. I. A new powder inhalation device. J Pharm Sci 60(10):1559–1564PubMedCrossRefGoogle Scholar
  6. 6.
    Lin WJ, Griffin DE et al (2011) Successful respiratory immunization with dry powder live-attenuated measles virus vaccine in rhesus macaques. Proc Natl Acad Sci U S A 108(7):2987–2992PubMedCrossRefGoogle Scholar
  7. 7.
    Amorij JP, Meulenaar J et al (2007) Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine 25(35):6447–6457PubMedCrossRefGoogle Scholar
  8. 8.
    Chen D, Dean H et al (2003) Pre-clinical and clinical studies of epidermal powder immunization with an influenza vaccine. Int Congr Ser 1263:555–558CrossRefGoogle Scholar
  9. 9.
    Garmise RJ, Staats HF et al (2007) Novel dry powder preparations of whole inactivated influenza virus for nasal vaccination. AAPS PharmSciTech 8(4):2–10CrossRefGoogle Scholar
  10. 10.
    Klas SD, Petrie CR et al (2008) A single immunization with a dry powder anthrax vaccine protects rabbits against lethal aerosol challenge. Vaccine 26(43):5494–5502PubMedCrossRefGoogle Scholar
  11. 11.
    Huang J, D’Souza AJ et al (2009) Protective immunity in mice achieved with dry powder formulation and alternative delivery of plage F1-V vaccine. Clin Vaccine Immunol 16(5):719–725PubMedCrossRefGoogle Scholar
  12. 12.
    Tim Parsons (2011) Researchers test inhalable measles vaccine. JH Pub Health News. Accessed 31 Jan 2011
  13. 13.
    Maa YF, Nguyen PA et al (1999) Protein inhalation powder: spray drying vs. spray drying. Pharm Res 16(2):249–254PubMedCrossRefGoogle Scholar
  14. 14.
    Tzannis ST, Prestrelski SJ (2000) Moisture effects on protein—excipient interactions in spray-dried powders. Nature of destabilizing effects of sucrose. J Pharm Sci 88(3):360–370CrossRefGoogle Scholar
  15. 15.
    Burger JL, Cape SP et al (2008) Stabilizing formulations for inhalable powders of live-attenuated measles virus vaccine. J Aerosol Med Pulm Drug Deliv 21(1):25–34PubMedCrossRefGoogle Scholar
  16. 16.
    Corbanie EA, Remon JP et al (2007) Spray drying of an attenuated live Newcastle disease vaccine virus intended for respiratory mass vaccination of poultry. Vaccine 25(49):8306–8317PubMedCrossRefGoogle Scholar
  17. 17.
    Broadhead J, Rouan SK et al (1994) The effect of process and formulation variables on the properties of spray-dried beta-galactosidase. J Pharm Pharmacol 46(6):458–467PubMedCrossRefGoogle Scholar
  18. 18.
    Labrude P, Rasolomanana M et al (1989) Protective effect of sucrose on spray drying of oxyhemoglobin. J Pharm Sci 78(3):223–239PubMedCrossRefGoogle Scholar
  19. 19.
    Bosquillon C, Lombry C et al (2001) Comparison of particle sizing techniques in the case of inhalation dry powders. J Pharm Sci 90(12):2032–2041PubMedCrossRefGoogle Scholar
  20. 20.
    Sievers RE, Quinn SP et al (2007) Near-critical fluid micronization of stabilized vaccines, antibiotics and anti-virals. J Supercrit Fluids 42(3):385–391CrossRefGoogle Scholar
  21. 21.
    Glover W, Chan HK et al (2006) Lung deposition of mannitol powder aerosol in healthy subjects. J Aerosol Med 19(4):522–532PubMedCrossRefGoogle Scholar
  22. 22.
    Daviskas E, Anderson SD et al (1997) Inhalation of dry-powder mannitol increases mucociliary clearance. Eur Respir J 10(11):2449–2454PubMedCrossRefGoogle Scholar
  23. 23.
    Daviskas E, Anderson SD et al (1999) Inhalation of dry powder mannitol improves clearance of mucus in patients with bronchiectasis. Am J Respir Crit Care Med 159(6):1843–1848PubMedGoogle Scholar
  24. 24.
    Daviskas E, Anderson SD et al (2001) The 24-h Effect of mannitol on the clearance of mucus in patients with bronchiectasis. Chest 119(2):414–421PubMedCrossRefGoogle Scholar
  25. 25.
    Daviskas E, Anderson SD et al (2005) Inhaled mannitol for the treatment of mucociliary dysfunction in patients with bronchiectasis—effect on lung function. Respirology 10(1):46–56PubMedCrossRefGoogle Scholar
  26. 26.
    Anderson SD, Brannan J et al (1997) A new method for bronchial provocation testing in asthmatic subjects using a dry powder of mannitol. Am J Respir Crit Care Med 156(3):758–765PubMedGoogle Scholar
  27. 27.
    Imamura K, Iwai M et al (2001) Evaluation of hydration states of protein in freeze-dried amorphous sugar matrix. J Pharm Sci 90(12):1955–1963PubMedCrossRefGoogle Scholar
  28. 28.
    Mahlin D, Berggren J et al (2006) The influence of PVP incorporation on moisture-induced surface crystallization of amorphous spray-dried lactose particles. Int J Pharm 321(1–2):78–85PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang J, Zografi G (2001) Water vapor absorption into amorphous sucrose-poly(vinyl pyrrolidone) and trehalose-poly(vinyl pyrrolidone) mixtures. J Pharm Sci 90(9):1375–1385PubMedCrossRefGoogle Scholar
  30. 30.
    Chen D, Maa YF et al (2002) Needle-free epidermal powder immunization. Expert Rev Vaccines 1(3):265–276PubMedCrossRefGoogle Scholar
  31. 31.
    Rochelle C, Lee G (2007) Dextran or hydroxyethyl starch in spray-freeze-dried trehalose/mannitol microparticles intended as ballistic particulate carriers for proteins. J Pharm Sci 96(9):2296–2309PubMedCrossRefGoogle Scholar
  32. 32.
    Finlay WH, Lange CF (2000) Lung delivery of aerosolized dextran. Am J Respir Crit Care Med 161(1):91–97PubMedGoogle Scholar
  33. 33.
    Percy SR (1872) US Patent 125 406Google Scholar
  34. 34.
    Cryan SA (2005) Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS J 7(1):E20–41PubMedCrossRefGoogle Scholar
  35. 35.
    Islam N, Gladki E (2008) Dry powder inhalers (DPIs)—a review of device reliability and innovation. Int J Pharm 360(1–2):1–11PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.AerasRockvilleUSA

Personalised recommendations