The Surface and Atmosphere of Venus: Evolution and Present State

Part of the ISSI Scientific Report Series book series (ISSI, volume 11)


Most models of atmospheric evolution start with the reasonable but unverified assumption that the original atmospheric inventories of Venus and Earth were similar. Although the two planets have similar overall abundances of nitrogen and carbon, the present day water inventory of Venus is lower than that of Earth by a factor of 105. The original water abundance of Venus is highly unconstrained. The high D/H ratio observed, 2.5 ×10− 2 or ≈ 150 times terrestrial (Donahue et al. 1997) has been cited as evidence of a large primordial water endowment (Donahue et al. 1982). Yet, given the likelihood of geologically recent water sources and the large uncertainty in the modern and past hydrogen and deuterium escape fluxes, the large D/H may not reflect the primordial water abundance but rather may result from the history of escape and resupply in the most recent ≈ 109 years of planetary evolution (Donahue et al. 1997, Grinspoon 1993, 1997). Thus, at present the best arguments for a sizable early Venusian water endowment remain dependent on models of planet formation and early volatile delivery. Most models of water delivery to early Earth involve impact processes that would have also supplied Venus with abundant water (Grinspoon 1987, Ip et al. 1998, Morbidelli et al. 2000). Stochastic processes could have created large inequities in original volatile inventory among neighboring planets (Morbidelli et al. 2000). However, given the great similarity in bulk densities and their close proximity in the Solar System the best assumption at present is that Venus and Earth started with similar water abundances.


Middle Atmosphere Venus Express Water Vapor Feedback Radar Imagery Adiabatic Lapse Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. V.S. Avduevsky, N.F. Borodin, A.I. Kuznetsov, A.I. Lifshits, M.Y. Marov, V.V. Mikhnevich, M.K. Rozhdestvenskii, V.A. Sokolov, Temperature pressure and density of atmosphere of Venus from information supplied by Venus-4 Space Probe. Doklady Akademii Nauk SSSR 179, pp. 310 (1968)Google Scholar
  2. V.S. Avduevsky, M.Y. Marov, A.I. Noykina, V.I. Polezhaev, F.S. Zavelevich, Heat transfer in Venus atmosphere. J. Atmos. Sci. 27, 569–579 (1970)ADSCrossRefGoogle Scholar
  3. A. Basilevsky, G.E. McGill, in Surface Evoluton of Venus, in Exploring Venus as a Terrestrial Planet, ed. by L.W. Esposito, E.R. Stofan, T.E. Cravens (American Geophysical Union, Washington, DC, 2007)Google Scholar
  4. M.A. Bullock, D.H. Grinspoon, The recent evolution of climate on Venus. Icarus 150, 19–37 (2001)Google Scholar
  5. T. Donahue, D.H. Grinspoon, R.E. Hartle, R.R. Hodges Jr, in Ion/neutral Escape of Hydrogen and Deuterium: Evolution of Water ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips. Venus II Geology, Geophysics, Atmosphere and Solar Wind Environment (University of Arizona Press, Tucson, 1997)Google Scholar
  6. T.M. Donahue, J.H. Hoffman, R.R. Hodges, A.J. Watson, Venus was wet – a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982)Google Scholar
  7. D.H. Grinspoon, Was Venus wet – deuterium reconsidered. Science 238, 1702–1704 (1987)Google Scholar
  8. D.H. Grinspoon, Implications of the high D/H ratio for the sources of water in Venus atmosphere. Nature 363, 428–431 (1993)ADSCrossRefGoogle Scholar
  9. D.H. Grinspoon, Venus Revealed: A New Look Below the Clouds of Our Mysterious Twin Planet (Helix Books, Perseus Piblishing, Cambridge, Massachusetts, 1997)Google Scholar
  10. D.H. Grinspoon, M.A. Bullock, in Astrobiology and Venus Exploration, ed. by L.W. Esposito, E.R. Stofan, T.E. Cravens. Exploring Venus as a Terrestrial Planet (American Geophysical Union, Washington DC, 2007)Google Scholar
  11. W.H. Ip, D.J. Williams, R.W. McEntire, B.H. Mauk, Ion sputtering and surface erosion at Europa. Geophys. Res. Lett. 25, 829–832 (1998)ADSCrossRefGoogle Scholar
  12. J.F. Kasting, Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988)Google Scholar
  13. J.F. Kasting, J.B. Pollack, T.P. Ackerman, Response of Earth’s atmosphere to increases in solar flux and implications for loss of water from Venus. Icarus 57, 335–355 (1984)Google Scholar
  14. S. Kumar, D.M. Hunten, J.B. Pollack, Nonthermal escape of hydrogen and deuterium from Venus and implications for loss of water. Icarus 55, 369–389 (1983)Google Scholar
  15. V.M. Linkin, J. Blamont, A.N. Lipatov, A.A. Shurupov, C. Malique, S.P. Ignatova, G.A. Frank, L.I. Hlyustova, A.V. Terterashvili, A. Seiff, V.V. Kerzhanovich, B. Ragent, R. Young, E. Elson, R. Preston, A. Ingersoll, D. Crisp, Thermal structure of the Venus atmosphere in the middle cloud layer. Pis’ma v Astronomicheskie Zhurnal 12, p. 36–40 (1986)ADSGoogle Scholar
  16. M.Y. Marov, Results of Venus missions. Ann. Rev. Astron. Astrophys. 16, 141–169 (1978)ADSCrossRefGoogle Scholar
  17. M.Y. Marov, D.H. Grinspoon, The Planet Venus (Yale University Press, New Haven, 1998)Google Scholar
  18. M.Y. Marov, V.S. Avduevsk, N.F. Borodin, A.P. Ekonomov, V.V. Kerzhano, V.P. Lysov, B.Y. Moshkin, M.K. Rozhdest, O.L. Raybov, Preliminary results on Venus atmosphere from Venera-8 Descent Module. Icarus 20, 407–421 (1973)Google Scholar
  19. A. Morbidelli, J. Chambers, J.I. Lunine, J.M. Petit, F. Robert, G.B. Valsecchi, K.E. Cyr, Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000)ADSCrossRefGoogle Scholar
  20. G.G. Schaber, R.G. Strom, H.J. Moore, L.A. Soderblom, R.L. Kirk, D.J. Chadwick, D.D., Dawson, L.R. Gaddis, J.M. Boyce, J. Russell, Geology and distribution of impact craters on Venus - what are they telling us. J. Geophys. Res.-Planets 97, 13,257–13,301 (1992)Google Scholar
  21. A. Seiff, Thermal structure of the atmosphere of Venus, in Venus, (A83-37401 17-31), ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz, pp. 215–279 (Tucson, AZ, University of Arizona Press, 1983)Google Scholar
  22. A. Seiff, J.T. Schofield, A.J. Kliore, F.W. Taylor, S.S Limaye, H.E. Revercomb, L.A. Sromovsky, V.V. Kerzahanovich, V.I. Moroz, M.Y. Marov, Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Adv. Space Res. 5(11), 3–58 (1985)Google Scholar
  23. S. Smrekar, L. Elkins-Tanton, J. Leitner, A. Lenardic, L. Mackwell, L. Moresi, C. Sotin, E.R. Stofan, in Tectonic and Thermal Evolution of Venus and the Role of Volatiles: Implications for Understanding the Terrestrial Planets, ed. by L.W. Esposito, E.R. Stofan, T.E. Cravens. Exploring Venus as a Terrestrial Planet (American Geophysica Union, Washington DC, 2007)Google Scholar
  24. S.E. Smrekar, E.R. Stofan, N. Mueller, A. Treiman, L. Elkins-Tanton, J. Helbert, G. Piccioni, P. Drossart, Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328, 605–608 (2010)ADSCrossRefGoogle Scholar
  25. S.C. Solomon, M.A. Bullock, D.H. Grinspoon, Climate change as a regulator of tectonics on Venus. Science 286, 87–90 (1999)CrossRefGoogle Scholar
  26. M.G. Tomasko, P.H. Smith, V.E. Suomi, L.A. Sromovsky, H.E. Revercomb, F.W. Taylor, D.J. Martonchik, A. Seiff, R. Boese, J.B. Pollack, A.P. Ingersoll, G. Schubert, C.C. Covey, The thermal balance of Venus in light of the Pioneer Venus mission. J. Geophys. Res.-Atmos., 85, 8187–8199, doi:10.1029/JA085iA13p08187 (1980)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Denver Museum of Nature & ScienceDenverUSA

Personalised recommendations