Stochastic Forecasting of Algae Blooms in Lakes

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 28)

Abstract

We consider the development of harmful algal blooms (HABs) in a lake with uncertain nutrients inflow. To quantify the impact of this uncertainty on predictions of the concentrations of various algae groups, we explore two alternative approaches based on the Fokker–Planck equation and PDF methods. Both approaches quantify predictive uncertainty by deriving deterministic equations for joint probability density functions of the algae concentrations. As an example, we study the impact of uncertain initial concentration and inflow–outflow ratio on the evolution of cyanobacteria (the blue-green algae).

References

  1. 1.
    Carmichael, W.: A world overview—One-hundred-twenty-seven years of research on toxic cyanobacteria—Where do we go from here? In: Hudnell, H.K. (ed.) Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs, pp. 105–125. Springer, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Dodds, W., Bouska, W., Eitzmann, J., Pilger T., Pitts, K., Riley, A., Schloesser, J., Thornbrugh, D.: Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43, 12–19 (2009)Google Scholar
  3. 3.
    Marshall, J.S., Sala, K.: A stochastic Lagrangian approach for simulating the effect of turbulent mixing on algae growth rate in photobioreactors. Chem. Eng. Sci. 66, 384–392 (2011)CrossRefGoogle Scholar
  4. 4.
    Malve, O., Laine, M., Haario, H., Kirkkala, T., Sarvala, J.: Bayesian modelling of algal mass occurrences: using adaptive MCMC methods with a lake water quality model. Environ. Model. Software. 22, 966–977 (2007)CrossRefGoogle Scholar
  5. 5.
    Haario, H., Kalachev, L., Laine, M.: Reduced models of algae growth. Bull. Math. Biol. 71, 1626–1648 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Huang, D.W., Wang, H.L., Feng, J.F., Zhu, Z.W.: Modelling algal densities in harmful algal blooms (HAB) with stochastic dynamics. Appl. Math. Model. 32, 1318–1326 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Hudnell, H., Jones, C., Labisi, B., Lucero, V., Hill, D.R., Eilers, J.: Freshwater harmful algal bloom (FHAB) suppression with solar powered circulation (SPC). Harmful Algae 9, 208–217 (2010)CrossRefGoogle Scholar
  8. 8.
    Risken, H.: The Fokker–Planck Equation: Methods of Solutions and Applications. Springer, Heidelberg (1989)MATHGoogle Scholar
  9. 9.
    Kraichnan, R.H.: Eddy Viscosity and Diffusivity: Exact Formulas and Approximations. Complex Systems 1, 805–820 (1987)MathSciNetMATHGoogle Scholar
  10. 10.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)MATHCrossRefGoogle Scholar
  11. 11.
    Tartakovsky, D.M., Broyda, S.: PDF equations for advective-reactive transport in heterogeneous porous media with uncertain properties. J. Contam. Hydrol. 120–121, 129–140 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • P. Wang
    • 1
  • D. M. Tartakovsky
    • 2
  • A. M. Tartakovsky
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations