Advertisement

RecQ Helicases: Conserved Guardians of Genomic Integrity

  • Nicolai Balle Larsen
  • Ian D. HicksonEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 767)

Abstract

The RecQ family of DNA helicases is highly conserved throughout ­evolution, and is important for the maintenance of genome stability. In humans, five RecQ family members have been identified: BLM, WRN, RECQ4, RECQ1 and RECQ5. Defects in three of these give rise to Bloom’s syndrome (BLM), Werner’s syndrome (WRN) and Rothmund–Thomson/RAPADILINO/Baller–Gerold (RECQ4) syndromes. These syndromes are characterised by cancer predisposition and/or premature ageing. In this review, we focus on the roles of BLM and its S. cerevisiae homologue, Sgs1, in genome maintenance. BLM/Sgs1 has been shown to play a critical role in homologous recombination at multiple steps, including end-resection, displacement loop formation, branch migration and double Holliday junction dissolution. In addition, recent evidence has revealed a role for BLM/Sgs1 in the stabilisation and repair of replication forks damaged during a perturbed S-phase. Finally BLM also plays a role in the suppression and/or resolution of ultra-fine anaphase DNA bridges that form between sister-chromatids during mitosis.

Keywords

Homologous Recombination Helicase Activity Holliday Junction RecQ Helicases ssDNA Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Dr Hocine Mankouri for helpful comments on this article. Work in the authors’ laboratory is supported by the Nordea Foundation, The Danish Cancer Society, the Danish Medical Research Council (FSS), The Association for International Cancer Research (AICR) and The Novo Nordisk Foundation.

References

  1. 1.
    Chu WK, Hickson ID. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer. 2009;9(9):644–54.PubMedGoogle Scholar
  2. 2.
    Bernstein KA, Gangloff S, Rothstein R. The RecQ DNA helicases in DNA repair. Annu Rev Genet. 2010;44:393–417.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Monnat Jr RJ. Human RECQ helicases: roles in DNA metabolism, mutagenesis and cancer biology. Semin Cancer Biol. 2010;20(5):329–39.PubMedPubMedCentralGoogle Scholar
  4. 4.
    German J, Sanz MM, Ciocci S, Ye TZ, Ellis NA. Syndrome-causing mutations of the BLM gene in persons in the Bloom’s Syndrome Registry. Hum Mutat. 2007;28(8):743–53.PubMedGoogle Scholar
  5. 5.
    German J, Archibald R, Bloom D. Chromosomal breakage in a rare and probably genetically determined syndrome of man. Science. 1965;148(3669):506–7.PubMedGoogle Scholar
  6. 6.
    Chaganti RS, Schonberg S, German J. A manyfold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc Natl Acad Sci USA. 1974;71(11):4508–12.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Fairman-Williams ME, Guenther UP, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Opin Struct Biol. 2010;20(3):313–24.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bernstein DA, Keck JL. Domain mapping of Escherichia coli RecQ defines the roles of conserved N- and C-terminal regions in the RecQ family. Nucleic Acids Res. 2003;31(11):2778–85.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Bernstein DA, Zittel MC, Keck JL. High-resolution structure of the E.coli RecQ helicase catalytic core. EMBO J. 2003;22(19):4910–21.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Saffi J, Pereira VR, Henriques JA. Importance of the Sgs1 helicase activity in DNA repair of Saccharomyces cerevisiae. Curr Genet. 2000;37(2):75–8.PubMedGoogle Scholar
  11. 11.
    Mullen JR, Kaliraman V, Brill SJ. Bipartite structure of the SGS1 DNA helicase in Saccharomyces cerevisiae. Genetics. 2000;154(3):1101–14.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bahr A, De Graeve F, Kedinger C, Chatton B. Point mutations causing Bloom’s syndrome abolish ATPase and DNA helicase activities of the BLM protein. Oncogene. 1998;17(20):2565–71.PubMedGoogle Scholar
  13. 13.
    Rong SB, Valiaho J, Vihinen M. Structural basis of Bloom syndrome (BS) causing mutations in the BLM helicase domain. Mol Med. 2000;6(3):155–64.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu JL, Rigolet P, Dou SX, Wang PY, Xi XG. The zinc finger motif of Escherichia coli RecQ is implicated in both DNA binding and protein folding. J Biol Chem. 2004;279(41):42794–802.PubMedGoogle Scholar
  15. 15.
    Guo RB, Rigolet P, Zargarian L, Fermandjian S, Xi XG. Structural and functional characterizations reveal the importance of a zinc binding domain in Bloom’s syndrome helicase. Nucleic Acids Res. 2005;33(10):3109–24.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ren H, Dou SX, Zhang XD, et al. The zinc-binding motif of human RECQ5beta suppresses the intrinsic strand-annealing activity of its DExH helicase domain and is essential for the helicase activity of the enzyme. Biochem J. 2008;412(3):425–33.PubMedGoogle Scholar
  17. 17.
    Pike AC, Shrestha B, Popuri V, et al. Structure of the human RECQ1 helicase reveals a putative strand-separation pin. Proc Natl Acad Sci USA. 2009;106(4):1039–44.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lucic B, Zhang Y, King O, et al. A prominent beta-hairpin structure in the winged-helix domain of RECQ1 is required for DNA unwinding and oligomer formation. Nucleic Acids Res. 2011;39(5):1703–17.PubMedGoogle Scholar
  19. 19.
    Kitano K, Kim SY, Hakoshima T. Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure. 2010;18(2):177–87.PubMedGoogle Scholar
  20. 20.
    Huber MD, Duquette ML, Shiels JC, Maizels N. A conserved G4 DNA binding domain in RecQ family helicases. J Mol Biol. 2006;358(4):1071–80.PubMedGoogle Scholar
  21. 21.
    Liu Z, Macias MJ, Bottomley MJ, et al. The three-dimensional structure of the HRDC domain and implications for the Werner and Bloom syndrome proteins. Structure. 1999;7(12):1557–66.PubMedGoogle Scholar
  22. 22.
    Bernstein DA, Keck JL. Conferring substrate specificity to DNA helicases: role of the RecQ HRDC domain. Structure. 2005;13(8):1173–82.PubMedGoogle Scholar
  23. 23.
    Kitano K, Yoshihara N, Hakoshima T. Crystal structure of the HRDC domain of human Werner syndrome protein, WRN. J Biol Chem. 2007;282(4):2717–28.PubMedGoogle Scholar
  24. 24.
    Kim YM, Choi BS. Structure and function of the regulatory HRDC domain from human Bloom syndrome protein. Nucleic Acids Res. 2010;38(21):7764–77.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sato A, Mishima M, Nagai A, et al. Solution structure of the HRDC domain of human Bloom syndrome protein BLM. J Biochem. 2010;148(4):517–25.PubMedGoogle Scholar
  26. 26.
    Karmakar P, Seki M, Kanamori M, et al. BLM is an early responder to DNA double-strand breaks. Biochem Biophys Res Commun. 2006;348(1):62–9.PubMedGoogle Scholar
  27. 27.
    von Kobbe C, Thoma NH, Czyzewski BK, Pavletich NP, Bohr VA. Werner syndrome protein contains three structure-specific DNA binding domains. J Biol Chem. 2003;278(52):52997–3006.Google Scholar
  28. 28.
    Vindigni A, Hickson ID. RecQ helicases: multiple structures for multiple functions? HFSP J. 2009;3(3):153–64.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Perry JJ, Yannone SM, Holden LG, et al. WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing. Nat Struct Mol Biol. 2006;13(5):414–22.PubMedGoogle Scholar
  30. 30.
    Opresko PL, Laine JP, Brosh Jr RM, Seidman MM, Bohr VA. Coordinate action of the helicase and 3’ to 5’ exonuclease of Werner syndrome protein. J Biol Chem. 2001;276(48):44677–87.PubMedGoogle Scholar
  31. 31.
    Boubriak I, Mason PA, Clancy DJ, Dockray J, Saunders RD, Cox LS. DmWRNexo is a 3’-5’ exonuclease: phenotypic and biochemical characterization of mutants of the Drosophila orthologue of human WRN exonuclease. Biogerontology. 2009;10(3):267–77.PubMedGoogle Scholar
  32. 32.
    Capp C, Wu JH, Hsieh TS. Drosophila RecQ4 has a 3 ‘-5 ‘ DNA helicase activity that is essential for viability. J Biol Chem. 2009;284(45):30845–52.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Abe T, Yoshimura A, Hosono Y, Tada S, Seki M, Enomoto T. The N-terminal region of RECQL4 lacking the helicase domain is both essential and sufficient for the viability of vertebrate cells. Role of the N-terminal region of RECQL4 in cells. Biochim Biophys Acta. 2011;1813(3):473–9.PubMedGoogle Scholar
  34. 34.
    Thangavel S, Mendoza-Maldonado R, Tissino E, et al. Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation. Mol Cell Biol. 2010;30(6):1382–96.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Chen CF, Brill SJ. An essential DNA strand-exchange activity is conserved in the divergent N-termini of BLM orthologs. EMBO J. 2010;29(10):1713–25.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Umezu K, Nakayama H. RecQ DNA helicase of Escherichia coli. Characterization of the helix-unwinding activity with emphasis on the effect of single-stranded DNA-binding protein. J Mol Biol. 1993;230(4):1145–50.PubMedGoogle Scholar
  37. 37.
    Harmon FG, Kowalczykowski SC. Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ helicase. J Biol Chem. 2001;276(1):232–43.PubMedGoogle Scholar
  38. 38.
    Shereda RD, Bernstein DA, Keck JL. A central role for SSB in Escherichia coli RecQ DNA helicase function. J Biol Chem. 2007;282(26):19247–58.PubMedGoogle Scholar
  39. 39.
    Shereda RD, Reiter NJ, Butcher SE, Keck JL. Identification of the SSB binding site on E. coli RecQ reveals a conserved surface for binding SSB’s C terminus. J Mol Biol. 2009;386(3):612–25.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Harmon FG, DiGate RJ, Kowalczykowski SC. RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanism for control of DNA recombination. Mol Cell. 1999;3(5):611–20.PubMedGoogle Scholar
  41. 41.
    Harmon FG, Kowalczykowski SC. RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev. 1998;12(8):1134–44.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol. 1994;14(12):8391–8.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ahmad F, Stewart E. The N-terminal region of the Schizosaccharomyces pombe RecQ helicase, Rqh1p, physically interacts with Topoisomerase III and is required for Rqh1p function. Mol Genet Genomics. 2005;273(1):102–14.PubMedGoogle Scholar
  44. 44.
    Fricke WM, Kaliraman V, Brill SJ. Mapping the DNA topoisomerase III binding domain of the Sgs1 DNA helicase. J Biol Chem. 2001;276(12):8848–55.PubMedGoogle Scholar
  45. 45.
    Ui A, Satoh Y, Onoda F, Miyajima A, Seki M, Enomoto T. The N-terminal region of Sgs1, which interacts with Top3, is required for complementation of MMS sensitivity and suppression of hyper-recombination in sgs1 disruptants. Mol Genet Genomics. 2001;265(5):837–50.PubMedGoogle Scholar
  46. 46.
    Chang M, Bellaoui M, Zhang C, et al. RMI1/NCE4, a suppressor of genome instability, encodes a member of the RecQ helicase/Topo III complex. EMBO J. 2005;24(11):2024–33.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Chen CF, Brill SJ. Binding and activation of DNA topoisomerase III by the Rmi1 subunit. J Biol Chem. 2007;282(39):28971–9.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Wu L, Davies SL, Levitt NC, Hickson ID. Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem. 2001;276(22):19375–81.PubMedGoogle Scholar
  49. 49.
    Cejka P, Plank JL, Bachrati CZ, Hickson ID, Kowalczykowski SC. Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3. Nat Struct Mol Biol. 2010;17(11):1377–82.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Wu L, Davies SL, North PS, et al. The Bloom’s syndrome gene product interacts with topoisomerase III. J Biol Chem. 2000;275(13):9636–44.PubMedGoogle Scholar
  51. 51.
    Yin J, Sobeck A, Xu C, et al. BLAP75, an essential component of Bloom’s syndrome protein complexes that maintain genome integrity. EMBO J. 2005;24(7):1465–76.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Raynard S, Zhao W, Bussen W, et al. Functional role of BLAP75 in BLM-topoisomerase IIIalpha-dependent holliday junction processing. J Biol Chem. 2008;283(23):15701–8.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Singh TR, Ali AM, Busygina V, et al. BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome. Genes Dev. 2008;22(20):2856–68.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Xu D, Guo R, Sobeck A, et al. RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability. Genes Dev. 2008;22(20):2843–55.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Wang F, Yang Y, Singh TR, et al. Crystal structures of RMI1 and RMI2, two OB-fold regulatory subunits of the BLM complex. Structure. 2010;18(9):1159–70.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Brosh Jr RM, Li JL, Kenny MK, et al. Replication protein A physically interacts with the Bloom’s syndrome protein and stimulates its helicase activity. J Biol Chem. 2000;275(31):23500–8.PubMedGoogle Scholar
  57. 57.
    Bergeron KL, Murphy EL, Brown LW, Almeida KH. Critical interaction domains between bloom syndrome protein and RAD51. Protein J. 2011;30(1):1–8.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Mohaghegh P, Karow JK, Brosh Jr RM, Bohr VA, Hickson ID. The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res. 2001;29(13):2843–9.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Bennett RJ, Keck JL, Wang JC. Binding specificity determines polarity of DNA unwinding by the Sgs1 protein of S. cerevisiae. J Mol Biol. 1999;289(2):235–48.PubMedGoogle Scholar
  60. 60.
    Sun H, Karow JK, Hickson ID, Maizels N. The Bloom’s syndrome helicase unwinds G4 DNA. J Biol Chem. 1998;273(42):27587–92.PubMedGoogle Scholar
  61. 61.
    Sun H, Bennett RJ, Maizels N. The Saccharomyces cerevisiae Sgs1 helicase efficiently unwinds G-G paired DNAs. Nucleic Acids Res. 1999;27(9):1978–84.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Kamath-Loeb A, Loeb LA, Fry M. The werner syndrome protein is distinguished from the bloom syndrome protein by its capacity to tightly bind diverse DNA structures. PLoS One. 2012;7(1):e30189.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Karow JK, Constantinou A, Li JL, West SC, Hickson ID. The Bloom’s syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci USA. 2000;97(12):6504–8.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Bachrati CZ, Borts RH, Hickson ID. Mobile D-loops are a preferred substrate for the Bloom’s syndrome helicase. Nucleic Acids Res. 2006;34(8):2269–79.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Bugreev DV, Yu X, Egelman EH, Mazin AV. Novel pro- and anti-recombination activities of the Bloom’s syndrome helicase. Genes Dev. 2007;21(23):3085–94.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Bugreev DV, Mazina OM, Mazin AV. Bloom syndrome helicase stimulates RAD51 DNA strand exchange activity through a novel mechanism. J Biol Chem. 2009;284(39):26349–59.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Wu L, Hickson ID. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature. 2003;426(6968):870–4.PubMedGoogle Scholar
  68. 68.
    Wu L, Chan KL, Ralf C, et al. The HRDC domain of BLM is required for the dissolution of double Holliday junctions. EMBO J. 2005;24(14):2679–87.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Bussen W, Raynard S, Busygina V, Singh AK, Sung P. Holliday junction processing activity of the BLM-Topo IIIalpha-BLAP75 complex. J Biol Chem. 2007;282(43):31484–92.PubMedGoogle Scholar
  70. 70.
    Chen SH, Wu CH, Plank JL, Hsieh TS. Essential functions of the C-terminus of Drosophila topoisomerase IIIalpha in double Holliday junction dissolution. J Biol Chem. 2012;287(23): 19346–53.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Wu L, Bachrati CZ, Ou J, et al. BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proc Natl Acad Sci USA. 2006;103(11):4068–73.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Yang J, Bachrati CZ, Ou J, Hickson ID, Brown GW. Human topoisomerase IIIalpha is a single-stranded DNA decatenase that is stimulated by BLM and RMI1. J Biol Chem. 2010;285(28):21426–36.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell. 2008;134(6):981–94.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Gravel S, Chapman JR, Magill C, Jackson SP. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 2008;22(20):2767–72.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Cejka P, Cannavo E, Polaczek P, et al. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature. 2010;467(7311):112–6.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Nimonkar AV, Genschel J, Kinoshita E, et al. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 2011;25(4):350–62.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Nimonkar AV, Ozsoy AZ, Genschel J, Modrich P, Kowalczykowski SC. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci USA. 2008;105(44):16906–11.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Li X, Heyer WD. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 2008;18(1):99–113.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Chu WK, Hanada K, Kanaar R, Hickson ID. BLM has early and late functions in homologous recombination repair in mouse embryonic stem cells. Oncogene. 2010;29(33):4705–14.PubMedGoogle Scholar
  80. 80.
    Myung K, Datta A, Chen C, Kolodner RD. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat Genet. 2001;27(1):113–6.PubMedGoogle Scholar
  81. 81.
    Sugawara N, Goldfarb T, Studamire B, Alani E, Haber JE. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc Natl Acad Sci USA. 2004;101(25):9315–20.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Mankouri HW, Craig TJ, Morgan A. SGS1 is a multicopy suppressor of srs2: functional overlap between DNA helicases. Nucleic Acids Res. 2002;30(5):1103–13.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Putnam CD, Hayes TK, Kolodner RD. Specific pathways prevent duplication-mediated genome rearrangements. Nature. 2009;460(7258):984–9.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Sebesta M, Burkovics P, Haracska L, Krejci L. Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair. 2011;10(6):567–76.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Ira G, Malkova A, Liberi G, Foiani M, Haber JE. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell. 2003;115(4):401–11.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Liberi G, Maffioletti G, Lucca C, et al. Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev. 2005;19(3):339–50.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Mankouri HW, Ngo HP, Hickson ID. Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1-Rmi1-Top3. Mol Biol Cell. 2007;18(10):4062–73.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Ashton TM, Mankouri HW, Heidenblut A, McHugh PJ, Hickson ID. Pathways for Holliday junction processing during homologous recombination in Saccharomyces cerevisiae. Mol Cell Biol. 2011;31(9):1921–33.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Mankouri HW, Ashton TM, Hickson ID. Holliday junction-containing DNA structures persist in cells lacking Sgs1 or Top3 following exposure to DNA damage. Proc Natl Acad Sci USA. 2011;108(12):4944–9.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Hickson ID, Mankouri HW. Processing of homologous recombination repair intermediates by the Sgs1-Top3-Rmi1 and Mus81-Mms4 complexes. Cell Cycle. 2011;10(18):3078–85.PubMedGoogle Scholar
  91. 91.
    Wechsler T, Newman S, West SC. Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature. 2011;471(7340):642–6.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Sengupta S, Linke SP, Pedeux R, et al. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J. 2003;22(5):1210–22.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Cobb JA, Bjergbaek L, Shimada K, Frei C, Gasser SM. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J. 2003;22(16):4325–36.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Bjergbaek L, Cobb JA, Tsai-Pflugfelder M, Gasser SM. Mechanistically distinct roles for Sgs1p in checkpoint activation and replication fork maintenance. EMBO J. 2005;24(2):405–17.PubMedGoogle Scholar
  95. 95.
    Cobb JA, Schleker T, Rojas V, Bjergbaek L, Tercero JA, Gasser SM. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 2005;19(24):3055–69.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Davies SL, North PS, Dart A, Lakin ND, Hickson ID. Phosphorylation of the Bloom’s syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol. 2004;24(3):1279–91.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Davies SL, North PS, Hickson ID. Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat Struct Mol Biol. 2007;14(7):677–9.PubMedGoogle Scholar
  98. 98.
    Xu D, Muniandy P, Leo E, et al. Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. EMBO J. 2010;29(18):3140–55.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Ralf C, Hickson ID, Wu L. The Bloom’s syndrome helicase can promote the regression of a model replication fork. J Biol Chem. 2006;281(32):22839–46.PubMedGoogle Scholar
  100. 100.
    Chan KL, North PS, Hickson ID. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J. 2007;26(14):3397–409.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Baumann C, Korner R, Hofmann K, Nigg EA. PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell. 2007;128(1):101–14.PubMedGoogle Scholar
  102. 102.
    Spence JM, Phua HH, Mills W, Carpenter AJ, Porter AC, Farr CJ. Depletion of topoisomerase IIalpha leads to shortening of the metaphase interkinetochore distance and abnormal persistence of PICH-coated anaphase threads. J Cell Sci. 2007;120(pt 22):3952–64.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Chan KL, Hickson ID. New insights into the formation and resolution of ultra-fine anaphase bridges. Semin Cell Dev Biol. 2011;22(8):906–12.PubMedGoogle Scholar
  104. 104.
    Chan KL, Palmai-Pallag T, Ying SM, Hickson ID. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol. 2009;11(6):753–60.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Meetei AR, Sechi S, Wallisch M, et al. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol Cell Biol. 2003;23(10):3417–26.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Howlett NG, Taniguchi T, Durkin SG, D’Andrea AD, Glover TW. The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum Mol Genet. 2005;14(5):693–701.Google Scholar
  107. 107.
    Vinciguerra P, Godinho SA, Parmar K, Pellman D, D’Andrea AD. Cytokinesis failure occurs in Fanconi anemia pathway-deficient murine and human bone marrow hematopoietic cells. J Clin Invest. 2010;120(11):3834–42.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Lahkim Bennani-Belhaj K, Rouzeau S, Buhagiar-Labarchede G, et al. The Bloom syndrome protein limits the lethality associated with RAD51 deficiency. Mol Cancer Res. 2010;8(3):385–94.PubMedGoogle Scholar
  109. 109.
    Chan KL, Hickson ID. On the origins of ultra-fine anaphase bridges. Cell Cycle. 2009;8(19):3065–6.PubMedGoogle Scholar
  110. 110.
    Suski C, Marians KJ. Resolution of converging replication forks by RecQ and topoisomerase III. Mol Cell. 2008;30(6):779–89.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Lukas C, Savic V, Bekker-Jensen S, et al. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol. 2011;13(3):243–53.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Sofueva S, Osman F, Lorenz A, et al. Ultrafine anaphase bridges, broken DNA and illegitimate recombination induced by a replication fork barrier. Nucleic Acids Res. 2011;39(15):6568–84.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Cha RS, Kleckner N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science. 2002;297(5581):602–6.PubMedGoogle Scholar
  114. 114.
    Dou H, Huang C, Nguyen TV, Lu LS, Yeh ETH. SUMOylation and de-SUMOylation in response to DNA damage. FEBS Lett. 2011;585(18):2891–6.PubMedGoogle Scholar
  115. 115.
    Branzei D, Sollier J, Liberi G, et al. Ubc9-and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell. 2006;127(3):509–22.PubMedGoogle Scholar
  116. 116.
    Eladad S, Ye TZ, Hu P, et al. Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum Mol Genet. 2005;14(10):1351–65.PubMedGoogle Scholar
  117. 117.
    Ouyang KJ, Woo LL, Zhu JM, Huo DZ, Matunis MJ, Ellis NA. SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. PLOS Biol. 2009;7(12):e1000252.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Weidtkamp-Peters S, Lenser T, Negorev D, et al. Dynamics of component exchange at PML nuclear bodies. J Cell Sci. 2008;121(pt 16):2731–43.PubMedGoogle Scholar
  119. 119.
    Lu CY, Tsai CH, Brill SJ, Teng SC. Sumoylation of the BLM ortholog, Sgs1, promotes telomere-telomere recombination in budding yeast. Nucleic Acids Res. 2010;38(2):488–98.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Nordea Center for Healthy Ageing, Department of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations