A Systems Biology Approach for Understanding Granuloma Formation and Function in Tuberculosis

  • Mohammad Fallahi-Sichani
  • Simeone Marino
  • JoAnne L. Flynn
  • Jennifer J. Linderman
  • Denise E. Kirschner


The pathologic hallmark of tuberculosis is the granuloma. A granuloma is a multifaceted cellular structure that serves to focus the host immune response, contain infection and pathology, and provide a niche for the bacillus to persist within the host. Granulomas form in response to Mycobacterium tuberculosis infection, and if a granuloma is capable of inhibiting or killing most of the M. tuberculosis present, humans develop a clinically latent infection. However, if a granuloma is impaired in function, infection progresses, granulomas enlarge, and bacteria seed new granulomas; this results in progressive pathology and disease, i.e., active tuberculosis. In clinical latency, immunologic perturbation at the level of the granuloma can result in reactivation of infection. In humans, there are a variety of granuloma types, even within the lungs of a single host.

The roles and interactions of various cells (macrophages, T cells, B cells, and neutrophils) and molecules (cytokines, chemokines, and effector molecules) within a granuloma are complex and challenging to address by experimental methods alone. Computational approaches, in particular agent-based modeling, can be used to dissect the temporal and spatial aspects of granuloma formation and function. Here we explain how a systems biology approach can integrate experimental and computational work to address critical questions necessary to understanding granulomas and contribute to the development and testing of strategies for prevention and treatment.



This work was supported by National Institute of Health (NIH) grants R33 HL092844 (JJL), R33 HL092853 and R01 HL106804 (DEK), and JLF was supported by grants from the NIH (R01 HL71241, R33 HL092883, HL106804) and the Bill and Melinda Gates Foundation Grand Challenges and TB Drug Accelerator Programs. R01-EB-012579 was awarded to DEK, JLL, and JLF. MF was supported by a University of Michigan Rackham Predoctoral Fellowship. We also thank Mohammed El-Kebir and Paul Wolberg for helpful discussions. The authors declare that they have no competing financial interests.


  1. 1.
    Bhatt K, Hickman SP, Salgame P (2004) Cutting edge: a new approach to modeling early lung immunity in murine tuberculosis. J Immunol 172:2748–2751PubMedGoogle Scholar
  2. 2.
    Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T et al (2008) Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med 205:105–115PubMedCrossRefGoogle Scholar
  3. 3.
    Lazarevic V, Nolt D, Flynn JL (2005) Long-term control of Mycobacterium tuberculosis infection is mediated by dynamic immune responses. J Immunol 175:1107–1117PubMedGoogle Scholar
  4. 4.
    Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM (2002) Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun 70:4501–4509PubMedCrossRefGoogle Scholar
  5. 5.
    Flynn JL, Klein E (2010) “Pulmonary tuberculosis in monkeys” in A color atlas of comparative pulmonary tuberculosis histopathology. In: Leong J, Dartois V, Dick T (eds) CRC, Boca Raton, pp 83–106Google Scholar
  6. 6.
    Flynn JL, Chan J, Lin PL (2011) Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4:271–278PubMedCrossRefGoogle Scholar
  7. 7.
    Lin PL, Rodgers M, Smith L, Bigbee M, Myers A et al (2009) Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77:4631–4642PubMedCrossRefGoogle Scholar
  8. 8.
    Geng E, Kreiswirth B, Burzynski J, Schluger NW (2005) Clinical and radiographic correlates of primary and reactivation tuberculosis: a molecular epidemiology study. JAMA 293:2740–2745PubMedCrossRefGoogle Scholar
  9. 9.
    Volkman HE, Pozos TC, Zheng J, Davis JM, Rawls JF et al (2010) Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327:466–469PubMedCrossRefGoogle Scholar
  10. 10.
    Lin PL, Flynn JL (2010) Understanding latent tuberculosis: a moving target. J Immunol 185:15–22PubMedCrossRefGoogle Scholar
  11. 11.
    Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422PubMedCrossRefGoogle Scholar
  12. 12.
    Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG et al (1993) Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178:2243–2247PubMedCrossRefGoogle Scholar
  13. 13.
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA et al (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254PubMedCrossRefGoogle Scholar
  14. 14.
    Gallegos AM, van Heijst JW, Samstein M, Su X, Pamer EG et al (2011) A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLoS Pathog 7:e1002052PubMedCrossRefGoogle Scholar
  15. 15.
    Torrado E, Cooper AM (2011) What do we really know about how CD4 T cells control mycobacterium tuberculosis? PLoS Pathog 7:e1002196PubMedCrossRefGoogle Scholar
  16. 16.
    Lin PL, Myers A, Smith L, Bigbee C, Bigbee M et al (2010) Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum 62:340–350PubMedCrossRefGoogle Scholar
  17. 17.
    Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K et al (1995) Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572PubMedCrossRefGoogle Scholar
  18. 18.
    Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345:1098–1104PubMedCrossRefGoogle Scholar
  19. 19.
    Maglione PJ, Chan J (2009) How B cells shape the immune response against mycobacterium tuberculosis. Eur J Immunol 39:676–686PubMedCrossRefGoogle Scholar
  20. 20.
    Flynn JL, Tsenova L, Izzo A, Kaplan G (2008) “Experimental animal models of tuberculosis” in Handbook of tuberculosis: Immunology and cell biology, In: Kaufmann SHE, Britton WJ (eds). Wiley-VCH Vol. 2, pp 389–417Google Scholar
  21. 21.
    Scanga CA, Mohan VP, Joseph H, Yu K, Chan J et al (1999) Reactivation of latent tuberculosis: variations on the cornell murine model. Infect Immun 67:4531–4538PubMedGoogle Scholar
  22. 22.
    Pichugin AV, Yan BS, Sloutsky A, Kobzik L, Kramnik I (2009) Dominant role of the sst1 locus in pathogenesis of necrotizing lung granulomas during chronic tuberculosis infection and reactivation in genetically resistant hosts. Am J Pathol 174:2190–2201PubMedCrossRefGoogle Scholar
  23. 23.
    Singhal A, Aliouat el M, Herve M, Mathys V, Kiass M et al (2011) Experimental tuberculosis in the wistar rat: a model for protective immunity and control of infection. PLoS One 6:e18632PubMedCrossRefGoogle Scholar
  24. 24.
    Orme IM (2006) Preclinical testing of new vaccines for tuberculosis: a comprehensive review. Vaccine 24:2–19PubMedCrossRefGoogle Scholar
  25. 25.
    Helke KL, Mankowski JL, Manabe YC (2006) Animal models of cavitation in pulmonary tuberculosis. Tuberculosis (Edinb) 86:337–348CrossRefGoogle Scholar
  26. 26.
    Turner OC, Basaraba RJ, Orme IM (2003) Immunopathogenesis of pulmonary granulomas in the guinea pig after infection with mycobacterium tuberculosis. Infect Immun 71:864–871PubMedCrossRefGoogle Scholar
  27. 27.
    Hoff DR, Ryan GJ, Driver ER, Ssemakulu CC, De Groote MA et al (2011) Location of intra- and extracellular M. tuberculosis populations in lungs of mice and guinea pigs during disease progression and after drug treatment. PLoS One 6:e17550PubMedCrossRefGoogle Scholar
  28. 28.
    Basaraba RJ (2008) Experimental tuberculosis: The role of comparative pathology in the discovery of improved tuberculosis treatment strategies. Tuberculosis (Edinb) 88(suppl 1): S35–S47CrossRefGoogle Scholar
  29. 29.
    Subbian S, Tsenova L, O’Brien P, Yang G, Koo MS et al (2011) Phosphodiesterase-4 inhibition combined with isoniazid treatment of rabbits with pulmonary tuberculosis reduces macrophage activation and lung pathology. Am J Pathol 179:289–301PubMedCrossRefGoogle Scholar
  30. 30.
    Via LE, Lin PL, Ray SM, Carrillo J, Allen SS et al (2008) Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76:2333–2340PubMedCrossRefGoogle Scholar
  31. 31.
    Allison MJ, Zappasodi P, Lurie MB (1962) Host-parasite relationships in natively resistant and susceptible rabbits on quantitative inhalation of tubercle bacilli: their significance for the nature of genetic resistance. Am Rev Respir Dis 85:553–569PubMedGoogle Scholar
  32. 32.
    Dannenberg AM (1994) Rabbit model of tuberculosis. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection, and control. American Society for Microbiology, Washington, DC, pp 149–156Google Scholar
  33. 33.
    Cosma CL, Swaim LE, Volkman H, Ramakrishnan L, Davis JM (2006) Zebrafish and frog models of mycobacterium marinum infection. Curr Protoc Microbiol Chapter 10:Unit 10B.2Google Scholar
  34. 34.
    Capuano SV 3rd, Croix DA, Pawar S, Zinovik A, Myers A et al (2003) Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect Immun 71:5831–5844PubMedCrossRefGoogle Scholar
  35. 35.
    Lin PL, Rutledge T, Green AM, Bigbee M, Fuhrman C et al (2012) CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS Res Hum Retroviruses. (in press)PubMedCrossRefGoogle Scholar
  36. 36.
    Mattila JT, Diedrich CR, Lin PL, Phuah J, Flynn JL (2011) Simian immunodeficiency virus-induced changes in T cell cytokine responses in cynomolgus macaques with latent Mycobacterium tuberculosis infection are associated with timing of reactivation. J Immunol 186:3527–3537PubMedCrossRefGoogle Scholar
  37. 37.
    Diedrich CR, Mattila JT, Klein E, Janssen C, Phuah J et al (2010) Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS One 5:e9611PubMedCrossRefGoogle Scholar
  38. 38.
    Mehra S, Golden NA, Dutta NK, Midkiff CC, Alvarez X et al (2011) Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus. J Med Primatol 40:233–243PubMedCrossRefGoogle Scholar
  39. 39.
    Davis SL, Nuermberger EL, Um PK, Vidal C, Jedynak B et al (2009) Noninvasive pulmonary [18F]-2-fluoro-deoxy-D-glucose positron emission tomography correlates with bactericidal activity of tuberculosis drug treatment. Antimicrob Agents Chemother 53:4879–4884PubMedCrossRefGoogle Scholar
  40. 40.
    Puissegur MP, Botanch C, Duteyrat JL, Delsol G, Caratero C et al (2004) An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell Microbiol 6:423–433PubMedCrossRefGoogle Scholar
  41. 41.
    Bowdish DM, Sakamoto K, Kim MJ, Kroos M, Mukhopadhyay S et al (2009) MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and mycobacterium tuberculosis. PLoS Pathog 5:e1000474PubMedCrossRefGoogle Scholar
  42. 42.
    Fallahi-Sichani M, Schaller MA, Kirschner DE, Kunkel SL, Linderman JJ (2010) Identification of key processes that control tumor necrosis factor availability in a tuberculosis granuloma. PLoS Comput Biol 6:e1000778PubMedCrossRefGoogle Scholar
  43. 43.
    Chensue SW, Warmington K, Ruth J, Lincoln P, Kuo MC et al (1994) Cytokine responses during mycobacterial and schistosomal antigen-induced pulmonary granuloma formation. ­production of Th1 and Th2 cytokines and relative contribution of tumor necrosis factor. Am J Pathol 145:1105–1113PubMedGoogle Scholar
  44. 44.
    Chensue SW, Kunkel SL (2003) Cytokines and chemokines in granulomatous inflammation. In: Boros DL (ed) Granulomatous infections and inflammations: cellular and molecular mechanisms. ASM Press, Washington, DC, pp 29–64.Google Scholar
  45. 45.
    Fallahi-Sichani M, El-Kebir M, Marino S, Kirschner DE, Linderman JJ (2011) Multiscale computational modeling reveals a critical role for TNF-α receptor 1 dynamics in tuberculosis granuloma formation. J Immunol 186:3472–3483PubMedCrossRefGoogle Scholar
  46. 46.
    Ray JC, Flynn JL, Kirschner DE (2009) Synergy between individual TNF-dependent functions determines granuloma performance for controlling Mycobacterium tuberculosis infection. J Immunol 182:3706–3717PubMedCrossRefGoogle Scholar
  47. 47.
    Segovia-Juarez JL, Ganguli S, Kirschner D (2004) Identifying control mechanisms of ­granuloma formation during M. tuberculosis infection using an agent-based model. J Theor Biol 231:357–376PubMedCrossRefGoogle Scholar
  48. 48.
    Warrender C, Forrest S, Koster F (2006) Modeling intercellular interactions in early mycobacterium infection. Bull Math Biol 68:2233–2261PubMedCrossRefGoogle Scholar
  49. 49.
    Bru A, Cardona PJ (2010) Mathematical modeling of tuberculosis bacillary counts and cellular populations in the organs of infected mice. PLoS One 5:e12985PubMedCrossRefGoogle Scholar
  50. 50.
    Ganguli S, Gammack D, Kirschner DE (2005) A metapopulation model of granuloma formation in the lung during infection with mycobacterium tuberculosis. Math Biosci Eng 2:535–560PubMedCrossRefGoogle Scholar
  51. 51.
    Gammack D, Doering CR, Kirschner DE (2004) Macrophage response to Mycobacterium tuberculosis infection. J Math Biol 48:218–242PubMedCrossRefGoogle Scholar
  52. 52.
    Marino S, Sud D, Plessner H, Lin PL, Chan J et al (2007) Differences in reactivation of tuberculosis induced from anti-TNF treatments are based on bioavailability in granulomatous tissue. PLoS Comput Biol 3:1909–1924PubMedCrossRefGoogle Scholar
  53. 53.
    Sud D, Bigbee C, Flynn JL, Kirschner DE (2006) Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection. J Immunol 176:4296–4314PubMedGoogle Scholar
  54. 54.
    Wigginton JE, Kirschner D (2001) A model to predict cell-mediated immune regulatory mechanisms during human infection with mycobacterium tuberculosis. J Immunol 166:1951–1967PubMedGoogle Scholar
  55. 55.
    Magombedze G, Garira W, Mwenje E (2006) Modelling the human immune response mechanisms to Mycobacterium tuberculosis infection in the lungs. Math Biosci Eng 3:661–682PubMedCrossRefGoogle Scholar
  56. 56.
    Day J, Friedman A, Schlesinger LS (2009) Modeling the immune rheostat of macrophages in the lung in response to infection. Proc Natl Acad Sci USA 106:11246–11251PubMedCrossRefGoogle Scholar
  57. 57.
    Marino S, El-Kebir M, Kirschner D (2011) A hybrid multi-compartment model of granuloma formation and T cell priming in tuberculosis. J Theor Biol 280:50–62PubMedCrossRefGoogle Scholar
  58. 58.
    Marino S, Pawar S, Fuller CL, Reinhart TA, Flynn JL et al (2004) Dendritic cell trafficking and antigen presentation in the human immune response to mycobacterium tuberculosis. J Immunol 173:494–506PubMedGoogle Scholar
  59. 59.
    Marino S, Myers A, Flynn JL, Kirschner DE (2010) TNF and IL-10 are major factors in modulation of the phagocytic cell environment in lung and lymph node in tuberculosis: a next-generation two-compartmental model. J Theor Biol 265:586–598PubMedCrossRefGoogle Scholar
  60. 60.
    Flynn JL (2004) Immunology of tuberculosis and implications in vaccine development. Tuberculosis (Edinb) 84:93–101CrossRefGoogle Scholar
  61. 61.
    Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254:178–196PubMedCrossRefGoogle Scholar
  62. 62.
    Algood HM, Lin PL, Flynn JL (2005) Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin Infect Dis 41(suppl 3):S189–S193PubMedCrossRefGoogle Scholar
  63. 63.
    Algood HM, Lin PL, Yankura D, Jones A, Chan J et al (2004) TNF influences chemokine expression of macrophages in vitro and that of CD11b+ cells in vivo during Mycobacterium tuberculosis infection. J Immunol 172:6846–6857PubMedGoogle Scholar
  64. 64.
    Algood HM, Chan J, Flynn JL (2003) Chemokines and tuberculosis. Cytokine Growth Factor Rev 14:467–477PubMedCrossRefGoogle Scholar
  65. 65.
    Lin PL, Plessner HL, Voitenok NN, Flynn JL (2007) Tumor necrosis factor and tuberculosis. J Investig Dermatol Symp Proc 12:22–25PubMedCrossRefGoogle Scholar
  66. 66.
    Chakravarty SD, Zhu G, Tsai MC, Mohan VP, Marino S et al (2008) Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infect Immun 76:916–926PubMedCrossRefGoogle Scholar
  67. 67.
    Clay H, Volkman HE, Ramakrishnan L (2008) Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29:283–294PubMedCrossRefGoogle Scholar
  68. 68.
    Iliopoulos A, Psathakis K, Aslanidis S, Skagias L, Sfikakis PP (2006) Tuberculosis and granuloma formation in patients receiving anti-TNF therapy. Int J Tuberc Lung Dis 10:588–590PubMedGoogle Scholar
  69. 69.
    Chensue SW, Warmington KS, Ruth JH, Lincoln P, Kunkel SL (1995) Cytokine function ­during mycobacterial and schistosomal antigen-induced pulmonary granuloma formation. Local and regional participation of IFN-gamma, IL-10, and TNF. J Immunol 154:5969–5976PubMedGoogle Scholar
  70. 70.
    Schutze S, Machleidt T, Adam D, Schwandner R, Wiegmann K et al (1999) Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J Biol Chem 274:10203–10212PubMedCrossRefGoogle Scholar
  71. 71.
    Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S et al (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21:415–428PubMedCrossRefGoogle Scholar
  72. 72.
    Schneider-Brachert W, Tchikov V, Merkel O, Jakob M, Hallas C et al (2006) Inhibition of TNF receptor 1 internalization by adenovirus 14.7K as a novel immune escape mechanism. J Clin Invest 116:2901–2913PubMedCrossRefGoogle Scholar
  73. 73.
    Neumeyer J, Hallas C, Merkel O, Winoto-Morbach S, Jakob M et al (2006) TNF-receptor I defective in internalization allows for cell death through activation of neutral ­sphingomyelinase. Exp Cell Res 312:2142–2153PubMedCrossRefGoogle Scholar
  74. 74.
    Harris J, Hope JC, Keane J (2008) Tumor necrosis factor blockers influence macrophage responses to mycobacterium tuberculosis. J Infect Dis 198:1842–1850PubMedCrossRefGoogle Scholar
  75. 75.
    Gutierrez MG, Mishra BB, Jordao L, Elliott E, Anes E et al (2008) NF-kappa B activation controls phagolysosome fusion-mediated killing of mycobacteria by macrophages. J Immunol 181:2651–2663PubMedGoogle Scholar
  76. 76.
    Keane J, Shurtleff B, Kornfeld H (2002) TNF-dependent BALB/c murine macrophage apoptosis following Mycobacterium tuberculosis infection inhibits bacillary growth in an IFN-gamma independent manner. Tuberculosis (Edinb) 82:55–61CrossRefGoogle Scholar
  77. 77.
    Keane J, Balcewicz-Sablinska MK, Remold HG, Chupp GL, Meek BB et al (1997) Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun 65:298–304PubMedGoogle Scholar
  78. 78.
    Zhou Z, Connell MC, MacEwan DJ (2007) TNFR1-induced NF-kappaB, but not ERK, p38MAPK or JNK activation, mediates TNF-induced ICAM-1 and VCAM-1 expression on endothelial cells. Cell Signal 19:1238–1248PubMedCrossRefGoogle Scholar
  79. 79.
    Russell DG, Barry CE 3rd, Flynn JL (2010) Tuberculosis: what we don’t know can, and does, hurt us. Science 328:852–856PubMedCrossRefGoogle Scholar
  80. 80.
    Wallis RS, Broder M, Wong J, Lee A, Hoq L (2005) Reactivation of latent granulomatous infections by infliximab. Clin Infect Dis 41(suppl 3):S194–S198PubMedCrossRefGoogle Scholar
  81. 81.
    Keane J (2005) TNF-blocking agents and tuberculosis: new drugs illuminate an old topic. Rheumatology (Oxford) 44:714–720CrossRefGoogle Scholar
  82. 82.
    Winthrop KL (2006) Risk and prevention of tuberculosis and other serious opportunistic ­infections associated with the inhibition of tumor necrosis factor. Nat Clin Pract Rheumatol 2:602–610PubMedCrossRefGoogle Scholar
  83. 83.
    Wallis RS (2008) Tumour necrosis factor antagonists: structure, function, and tuberculosis risks. Lancet Infect Dis 8:601–611PubMedCrossRefGoogle Scholar
  84. 84.
    Hochberg MC, Tracy JK, Hawkins-Holt M, Flores RH (2003) Comparison of the efficacy of the tumour necrosis factor alpha blocking agents adalimumab, etanercept, and infliximab when added to methotrexate in patients with active rheumatoid arthritis. Ann Rheum Dis 62(suppl 2):ii13–ii16PubMedGoogle Scholar
  85. 85.
    Gladman DD (2008) Adalimumab, etanercept and infliximab are equally effective treatments for patients with psoriatic arthritis. Nat Clin Pract Rheumatol 4:510–511PubMedCrossRefGoogle Scholar
  86. 86.
    Wallis RS (2009) Infectious complications of tumor necrosis factor blockade. Curr Opin Infect Dis 22:403–409PubMedCrossRefGoogle Scholar
  87. 87.
    Wallis RS, Broder MS, Wong JY, Hanson ME, Beenhouwer DO (2004) Granulomatous ­infectious diseases associated with tumor necrosis factor antagonists. Clin Infect Dis 38:1261–1265PubMedCrossRefGoogle Scholar
  88. 88.
    Tubach F, Salmon D, Ravaud P, Allanore Y, Goupille P et al (2009) Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: the three-year prospective french research axed on tolerance of biotherapies registry. Arthritis Rheum 60:1884–1894PubMedCrossRefGoogle Scholar
  89. 89.
    Fonseca JE, Canhao H, Silva C, Miguel C, Mediavilla MJ et al (2006) Tuberculosis in ­rheumatic patients treated with tumour necrosis factor alpha antagonists: the portuguese ­experience. Acta Reumatol Port 31:247–253PubMedGoogle Scholar
  90. 90.
    Fallahi-Sichani M, Flynn JL, Linderman JJ, Kirschner DE (2012) Differential risk of tuberculosis reactivation among anti-TNF therapies is due to drug binding kinetics and permeability. J Immunol 188:3169–3178PubMedCrossRefGoogle Scholar
  91. 91.
    Plessner HL, Lin PL, Kohno T, Louie JS, Kirschner D et al (2007) Neutralization of tumor necrosis factor (TNF) by antibody but not TNF receptor fusion molecule exacerbates chronic murine tuberculosis. J Infect Dis 195:1643–1650PubMedCrossRefGoogle Scholar
  92. 92.
    Cook DN, Bottomly K (2007) Innate immune control of pulmonary dendritic cell trafficking. Proc Am Thorac Soc 4:234–239PubMedCrossRefGoogle Scholar
  93. 93.
    Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5:617–628PubMedCrossRefGoogle Scholar
  94. 94.
    Celli S, Garcia Z, Bousso P (2005) CD4 T cells integrate signals delivered during successive DC encounters in vivo. J Exp Med 202:1271–1278PubMedCrossRefGoogle Scholar
  95. 95.
    Celli S, Lemaitre F, Bousso P (2007) Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation. Immunity 27:625–634PubMedCrossRefGoogle Scholar
  96. 96.
    Zheng H, Jin B, Henrickson SE, Perelson AS, von Andrian UH et al (2008) How antigen quantity and quality determine T-cell decisions in lymphoid tissue. Mol Cell Biol 28:4040–4051PubMedCrossRefGoogle Scholar
  97. 97.
    Linderman JJ, Riggs T, Pande M, Miller M, Marino S et al (2010) Characterizing the dynamics of CD4+ T cell priming within a lymph node. J Immunol 184:2873–2885PubMedCrossRefGoogle Scholar
  98. 98.
    Steinman RM (2001) Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation. Mt Sinai J Med 68:160–166PubMedGoogle Scholar
  99. 99.
    Kirschner DE, Webb GF (1998) Immunotherapy of HIV-1 infection. J Biol Syst 6:71–83CrossRefGoogle Scholar
  100. 100.
    Kirschner D, Panetta JC (1998) Modeling immunotherapy of the tumor-immune interaction. J Math Biol 37:235–252PubMedCrossRefGoogle Scholar
  101. 101.
    Churchyard GJ, Kaplan G, Fallows D, Wallis RS, Onyebujoh P et al (2009) Advances in immunotherapy for tuberculosis treatment. Clin Chest Med 30:769–782, ixPubMedCrossRefGoogle Scholar
  102. 102.
    Rook GA, Lowrie DB, Hernandez-Pando R (2007) Immunotherapeutics for tuberculosis in experimental animals: is there a common pathway activated by effective protocols? J Infect Dis 196:191–198PubMedCrossRefGoogle Scholar
  103. 103.
    Wallis RS (2005) Reconsidering adjuvant immunotherapy for tuberculosis. Clin Infect Dis 41:201–208PubMedCrossRefGoogle Scholar
  104. 104.
    Kim MS, Lee SH, Song MY, Yoo TH, Lee BK et al (2007) Comparative analyses of complex formation and binding sites between human tumor necrosis factor-alpha and its three antagonists elucidate their different neutralizing mechanisms. J Mol Biol 374:1374–1388PubMedCrossRefGoogle Scholar
  105. 105.
    Nestorov I (2005) Clinical pharmacokinetics of TNF antagonists: how do they differ? Semin Arthritis Rheum 34:12–18PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Mohammad Fallahi-Sichani
    • 1
  • Simeone Marino
    • 2
  • JoAnne L. Flynn
    • 3
  • Jennifer J. Linderman
    • 4
  • Denise E. Kirschner
    • 2
  1. 1.Department of Systems BiologyHarvard Medical SchoolBostonUSA
  2. 2.Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborUSA
  3. 3.Department of Microbiology and Molecular GeneticsUniversity of Pittsburgh School of MedicinePittsburghUSA
  4. 4.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations