Comparative Analysis of the Higher-Order Structure of RNA

Chapter
Part of the Biophysics for the Life Sciences book series (BIOPHYS, volume 3)

Abstract

“If you want to understand function, study structure”

The functions of many RNA molecules are directly associated with their ­higher-order structure, and given the vast abundance of their functions in a cell, the ­determination of their structures should contribute significantly to our understanding of the cell. A variety of methods are used to determine their higher-order structure. A multitude of experimental methods are discussed elsewhere in this book. Computational methods are also used. The first type, considered one of the grand challenges in biology, utilizes different fundamental principles of RNA structure to predict their secondary and three-dimensional structure. While the accuracies of these methods have been improving, generally speaking, higher-quality structure information is obtained with experimental methods. In contrast to the computational methods that utilize first principles to predict the RNA’s higher-order ­structure, comparative methods are utilized to infer structure, function, and evolution from the patterns of sequence and structure conservation and variation. The primary objective of this chapter is to briefly review the use of comparative analysis to deduce information about RNA structure, using an evolutionary framework.

Keywords

RNA structure Computational comparative analysis RNA structure motifs Covariation analysis 

Notes

Acknowledgements

The author appreciates the funding from the National Institutes of Health (GM067317) and the Welch Foundation (F-1427) to support the research in the Gutell lab.

References

  1. Alkemar G, Nygard O (2003) A possible tertiary rRNA interaction between expansion segments ES3 and ES6 in eukaryotic 40S ribosomal subunits. RNA 9(1):20–24PubMedCrossRefGoogle Scholar
  2. Anonymous (1970). “Central Dogma Reversed.” Nature 226(5252): 1198-1199Google Scholar
  3. Ban N, Nissen P et al (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289(5481):905–920PubMedCrossRefGoogle Scholar
  4. Branlant C, Krol A et al (1981) Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. Nucleic Acids Res 9(17):4303–4324PubMedCrossRefGoogle Scholar
  5. Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 4(2)Google Scholar
  6. Cannone JJ, Subramanian S et al (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3(1):2PubMedCrossRefGoogle Scholar
  7. Cate JH, Gooding AR et al (1996) RNA tertiary structure mediation by adenosine platforms. Science 273(5282):1696–1699PubMedCrossRefGoogle Scholar
  8. Cech TR (1988) Conserved sequences and structures of group I introns: building an active site for RNA catalysis–a review. Gene 73(2):259–271PubMedCrossRefGoogle Scholar
  9. Conn GL, Gutell RR et al (1998) A functional ribosomal RNA tertiary structure involves a base triple interaction. Biochem 37(34):11980–11988CrossRefGoogle Scholar
  10. Crick F (1988) What Mad Pursuit: A Personal View of Scientific Discovery. Basic Books, New YorkGoogle Scholar
  11. Crick FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163PubMedGoogle Scholar
  12. Crick FH (1968) The origin of the genetic code. J Mol Biol 38(3):367–379PubMedCrossRefGoogle Scholar
  13. Darwin C (1859) On the Origin of Species. John Murray, London, EnglandGoogle Scholar
  14. Elgavish T, Cannone JJ et al (2001) AA.AG@helix.ends: A:A and A:G base-pairs at the ends of 16S and 23S rRNA helices. J Mol Biol 310(4):735–753PubMedCrossRefGoogle Scholar
  15. Fox GE, Woese CR (1975) 5S RNA secondary structure. Nature 256(5517):505–507PubMedCrossRefGoogle Scholar
  16. Gardner PP, Daub J et al (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37(Database issue):D136–D140PubMedCrossRefGoogle Scholar
  17. Gautheret D, Damberger SH et al (1995) Identification of base-triples in RNA using comparative sequence analysis. J Mol Biol 248(1):27–43PubMedCrossRefGoogle Scholar
  18. Gautheret D, Konings D et al (1994) A major family of motifs involving G.A mismatches in ribosomal RNA. J Mol Biol 242(1):1–8PubMedCrossRefGoogle Scholar
  19. Glotz C, Zwieb C et al (1981) Secondary structure of the large subunit ribosomal RNA from Escherichia coli, Zea mays chloroplast, and human and mouse mitochondrial ribosomes. Nucleic Acids Res 9(14):3287–3306PubMedCrossRefGoogle Scholar
  20. Guerrier-Takada C, Gardiner K et al (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(3 Pt 2):849–857PubMedCrossRefGoogle Scholar
  21. Gutell R (1993) Comparative studies of RNA: inferring higher-order structure from patterns of sequence variation. Curr Opin Struct Biol 3:313–322CrossRefGoogle Scholar
  22. Gutell RR (1996) Comparative sequence analysis and the structure of 16S and 23S rRNA. In: Zimmermann RA, Dahlberg AE (eds) Ribosomal RNA: Structure, Evolution, Processing, and Function in Protein Biosynthesis. CRC Press, Boca Raton, FL, pp 111–128Google Scholar
  23. Gutell RR, Cannone JJ et al (2000) A story: unpaired adenosine bases in ribosomal RNAs. J Mol Biol 304(3):335–354PubMedCrossRefGoogle Scholar
  24. Gutell RR, Larsen N et al (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58(1):10–26PubMedGoogle Scholar
  25. Gutell RR, Lee JC et al (2002) The accuracy of ribosomal RNA comparative structure models. Curr Opin Struct Biol 12(3):301–310PubMedCrossRefGoogle Scholar
  26. Gutell RR, Noller HF et al (1986) Higher order structure in ribosomal RNA. EMBO J 5(5):1111–1113PubMedGoogle Scholar
  27. Gutell RR, Power A et al (1992) Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res 20(21):5785–5795PubMedCrossRefGoogle Scholar
  28. Gutell RR, Weiser B et al (1985) Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32:155–216PubMedCrossRefGoogle Scholar
  29. Gutell RR, Woese CR (1990) Higher order structural elements in ribosomal RNAs: pseudo-knots and the use of noncanonical pairs. Proc Natl Acad Sci USA 87(2):663–667PubMedCrossRefGoogle Scholar
  30. Guthrie C, Patterson B (1988) Spliceosomal snRNAs. Annu Rev Genet 22:387–419PubMedCrossRefGoogle Scholar
  31. Haller A, Souliere MF et al (2011) The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc Chem Res 44(12):1339–1348PubMedCrossRefGoogle Scholar
  32. Hiller DA, Strobel SA (2011) The chemical versatility of RNA. Philos Trans R Soc Lond B Biol Sci 366(1580):2929–2935PubMedCrossRefGoogle Scholar
  33. Holley RW, Apgar J et al (1965) Structure of a ribonucleic acid. Science 147:1462–1465PubMedCrossRefGoogle Scholar
  34. James BD, Olsen GJ et al (1988) The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell 52(1):19–26PubMedCrossRefGoogle Scholar
  35. Kim SH (1976) Three-dimensional structure of transfer RNA. Prog Nucleic Acid Res Mol Biol 17:181–216PubMedCrossRefGoogle Scholar
  36. Kim SH, Suddath FL et al (1974) Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185(149):435–440PubMedCrossRefGoogle Scholar
  37. Kruger K, Grabowski PJ et al (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31(1):147–157PubMedCrossRefGoogle Scholar
  38. Lee JC, Cannone JJ et al (2003) The lonepair triloop: a new motif in RNA structure. J Mol Biol 325(1):65–83PubMedCrossRefGoogle Scholar
  39. Levitt M (1969) Detailed molecular model for transfer ribonucleic acid. Nature 224(221):759–763PubMedCrossRefGoogle Scholar
  40. Madison JT, Everett GA et al (1966) On the nucleotide sequence of yeast tyrosine transfer RNA. Cold Spring Harb Symp Quant Biol 31:409–416PubMedCrossRefGoogle Scholar
  41. Michel F, Umesono K et al (1989) Comparative and functional anatomy of group II catalytic introns–a review. Gene 82(1):5–30PubMedCrossRefGoogle Scholar
  42. Michel F, Westhof E (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216(3):585–610PubMedCrossRefGoogle Scholar
  43. Moore PB (1999) Structural motifs in RNA. Annu Rev Biochem 68:287–300PubMedCrossRefGoogle Scholar
  44. Moore PB, Steitz TA (2011) The Roles of RNA in the Synthesis of Protein. Cold Spring Harb. Perspect, Biol, 2Google Scholar
  45. Noller HF (2006) Biochemical characterization of the ribosomal decoding site. Biochimie 88(8):935–941PubMedCrossRefGoogle Scholar
  46. Noller HF, Chaires JB (1972) Functional modification of 16S ribosomal RNA by kethoxal. Proc Natl Acad Sci USA 69(11):3115–3118PubMedCrossRefGoogle Scholar
  47. Noller HF, Kop J et al (1981) Secondary structure model for 23S ribosomal RNA. Nucleic Acids Res 9(22):6167–6189PubMedCrossRefGoogle Scholar
  48. Ogle JM, Brodersen DE et al (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292(5518):897–902PubMedCrossRefGoogle Scholar
  49. Olsen GJ (1983) Comparative analysis of nucleotide sequence data Ph.D., University of Colorado.Google Scholar
  50. Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38(3):381–393PubMedCrossRefGoogle Scholar
  51. RajBhandary UL, Stuart A et al (1966) Nucleotide sequence studies on yeast phenylalanine sRNA. Cold Spring Harb Symp Quant Biol 31:425–434PubMedCrossRefGoogle Scholar
  52. Rich A, RajBhandary UL (1976) Transfer RNA: molecular structure, sequence, and properties. Annu Rev Biochem 45:805–860PubMedCrossRefGoogle Scholar
  53. Robertus JD, Ladner JE et al (1974) Structure of yeast phenylalanine tRNA at 3 A resolution. Nature 250(5467):546–551PubMedCrossRefGoogle Scholar
  54. Romero DP, Blackburn EH (1991) A conserved secondary structure for telomerase RNA. Cell 67(2):343–353PubMedCrossRefGoogle Scholar
  55. SantaLucia J Jr, Kierzek R et al (1990) Effects of GA mismatches on the structure and thermodynamics of RNA internal loops. Biochem 29(37):8813–8819CrossRefGoogle Scholar
  56. Shang L, Xu W et al (2012) Structural constraints identified with covariation analysis in ­ribosomal RNA. PLoS ONE, 7(6):e39383PubMedCrossRefGoogle Scholar
  57. Stiegler P, Carbon P et al (1981) A general secondary-structure model for procaryotic and eucaryotic RNAs from the small ribosomal subunits. Eur J Biochem 120(3):487–495PubMedCrossRefGoogle Scholar
  58. Traub W, Sussman JL (1982) Adenine-guanine base pairing ribosomal RNA. Nucleic Acids Res 10(8):2701–2708PubMedCrossRefGoogle Scholar
  59. Tuerk C, Gauss P et al (1988) CUUCGG hairpins: extraordinarily stable RNA secondary structures associated with various biochemical processes. Proc Natl Acad Sci USA 85(5):1364–1368PubMedCrossRefGoogle Scholar
  60. Wimberly BT, Brodersen DE et al (2000) Structure of the 30S ribosomal subunit. Nature 407(6802):327–339PubMedCrossRefGoogle Scholar
  61. Woese CR (1967) The genetic code: the molecular basis for genetic expression (Modern perspectives in biology). Harper & Row, New YorkGoogle Scholar
  62. Woese CR, Magrum LJ et al (1980) Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res 8(10):2275–2293PubMedCrossRefGoogle Scholar
  63. Woese CR, Winker S et al (1990) Architecture of ribosomal RNA: constraints on the sequence of “tetra-loops”. Proc Natl Acad Sci USA 87(21):8467–8471PubMedCrossRefGoogle Scholar
  64. Zwieb C (1989) Structure and function of signal recognition particle RNA. Prog Nucleic Acid Res Mol Biol 37:207–234PubMedCrossRefGoogle Scholar
  65. Zwieb C, Glotz C et al (1981) Secondary structure comparisons between small subunit ribosomal RNA molecules from six different species. Nucleic Acids Res 9(15):3621–3640PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Integrative Biology, Institute for Cellular and Molecular Biology, and the Center for Computational Biology and BioinformaticsUniversity of Texas at AustinAustinUSA

Personalised recommendations