Piezo Printhead Control: Jetting Any Drop at Any Time

  • Sjirk KoekebakkerEmail author
  • Mohamed Ezzeldin
  • Amol Khalate
  • Robert Babuška
  • Xavier Bombois
  • Paul van den Bosch
  • Gérard Scorletti
  • Siep Weiland
  • Herman Wijshoff
  • René Waarsing
  • Wim de Zeeuw
Part of the Embedded Systems book series (EMSY, volume 22)


Full flexible use of inkjet printhead units in printing systems requires consistent generation of drops with any given volume and velocity at any moment and place desired. True drop-on-demand is currently hampered by physical phenomena in the printhead. These are residual vibrations and crosstalk resulting from conventional jets. This chapter presents control strategies to overcome these problems. First, with experiment-based control the drop characteristics are measured and the jet pulse that activates the jetting of a drop is optimised. Choosing a proper jet pulse structure, one can deal with single-channel residual vibration, multi-channel crosstalk, and even generalise optimisation over each bitmap to be printed. Secondly, with a model-based control approach, optimised jet pulses can be derived without additional measurement equipment. Considering the inkjet mechanism as an uncertain system and designing a robust pulse allows to deal with differences between model and real system. Both the experiment- and model-based method result in strongly improved drop characteristics, which is experimentally verified and thereby provide very valuable steps towards adaptive printing systems.


Input Pulse Drop Velocity Standard Pulse Print Quality Residual Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been carried out as part of the Octopus project with Océ-Technologies B.V. under the responsibility of the Embedded Systems Institute. This project is partially supported by the Netherlands Ministry of Economic Affairs, Agriculture, and Innovation under the BSIK program.


  1. 1.
    Bartholomew-Biggs, M.: Nonlinear Optimization with Engineering Applications. Springer Optimization and its Applications, vol. 19. Springer, New York (2008)Google Scholar
  2. 2.
    Beltman, W.M.: Viscothermal wave propagation including acousto-elastic interaction, part I: theory. J. Sound Vib. 227, 555–586 (1999)Google Scholar
  3. 3.
    Berger, S.S., Recktenwald, G.: Development of an improved model for piezo-electric driven ink jets. In: Proceedings of the 19th IS&T International Conference on Digital Printing Technologies (NIP19), New Orleans, pp. 323–327 (2003)Google Scholar
  4. 4.
    Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53, 464–501 (2011)Google Scholar
  5. 5.
    Dijksman, J.F.: Hydrodynamics of small tubular pumps. J. Fluid Mech. 139, 173–191 (1984)Google Scholar
  6. 6.
    Ezzeldin, M., van den Bosch, P.P.J., Jokic, A., Waarsing, R.: Model-free optimization based feedforward control for an inkjet printhead. In: Proceedings of the 2010 IEEE International Conference on Control Applications (CCA 2010), Yokohama, pp. 967–972 (2010)Google Scholar
  7. 7.
    Ezzeldin, M., van den Bosch, P.P.J., Weiland, S.: Improving the performance of an inkjet printhead using model predictive control. In: Proceedings of the 18th IFAC World Congress (IFAC 2011), Milano, pp. 11544–11549 (2011)Google Scholar
  8. 8.
    Ezzeldin, M., van den Bosch, P.P.J., Weiland, S.: Towards a better printing quality for an inkjet printhead. IEEE Control Syst. (2012). Accepted for publicationGoogle Scholar
  9. 9.
    Georgakis, C.: A model-free methodology for the optimization of batch processes: design of dynamic experiments. In: Proceedings of the 7th IFAC International Symposium on Advanced Control of Chemical Processes (ADCHEM 2009), Hong Kong, pp. 644–649 (2009)Google Scholar
  10. 10.
    Golub, G.H., van Loan, C.F.: Matrix Computations. John Hopkins University Press, Baltimore (1989)Google Scholar
  11. 11.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Boston (1993)Google Scholar
  12. 12.
    Groot Wassink, M.B.: Inkjet printhead performance enhancement by feedforward input design based on two-port modeling. Ph.D. thesis, Delft University of Technology, Delft (2007)Google Scholar
  13. 13.
    Hutchinson, S., Hager, G.D., Corke, P.I.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12, 651–670 (1996)Google Scholar
  14. 14.
    Khalate, A.A., Bayon, B., Bombois, X., Scorletti, G., Babuška, R.: Drop-on-demand inkjet printhead performance improvement using robust feedforward control. In: Proceedings of the 50th IEEE Conference on Decision and Control (CDC 2011), Orlando, pp. 4183–4188 (2011)Google Scholar
  15. 15.
    Khalate, A.A., Bombois, X., Babuška, R., Scorletti, G., Koekebakker, S., Wijshoff, H., de Zeeuw, W., Waarsing, R.: Performance improvement of a drop-on-demand inkjet printhead: a feedforward control based approach. In: Proceedings of the 27th IS&T International Conference on Digital Printing Technologies (NIP27), Minneapolis, pp. 74–78 (2011)Google Scholar
  16. 16.
    Khalate, A.A., Bombois, X., Babuška, R., Wijshoff, H., Waarsing, R.: Performance improvement of a drop-on-demand inkjet printhead using an optimization-based feedforward control method. Control Eng. Pract. 19, 771–781 (2011)Google Scholar
  17. 17.
    Khalate, A.A., Bombois, X., Scorletti, G., Babuška, R., Waarsing, R., de Zeeuw, W.: Robust feedforward control for a drop-on-demand inkjet printhead. In: Proceedings of the 18th IFAC World Congress (IFAC 2011), Milano, pp. 5795–5800 (2011)Google Scholar
  18. 18.
    Khalate, A.A., Bombois, X., Ye, S., Babuška, R., Koekebakker, S.: Minimization of cross-talk in a piezo inkjet printhead based on system identification and feedforward control. J. Micromech Microeng (2012). Accepted for publicationGoogle Scholar
  19. 19.
    Ljung, L.: System Identification – Theory For the User. Prentice Hall, Upper Saddle River (1999)Google Scholar
  20. 20.
    Matlab: Accessed Aug 2012
  21. 21.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)Google Scholar
  22. 22.
    Ruszczynski, A.P.: Nonlinear Optimization. Princeton University Press, Princeton (2006)Google Scholar
  23. 23.
    Scherer, C., Weiland, S.: Linear Matrix Inequalities in Control. Lecture Notes. DISC, Delft (2006)Google Scholar
  24. 24.
    Schield, T.W., Bogy, D.B., Talke, F.E.: A numerical comparison of one-dimensional fluid jet models applied to drop-on-demand printing. J. Comput. Phys. 67, 327–347 (1986)Google Scholar
  25. 25.
    Slot, M., Feenstra, F., de Witte, P.: Roadmap printing: from the world of print to the printed world. In: High Tech Systems and Materials Platform, Eindhoven (2011)Google Scholar
  26. 26.
    The Mathworks Inc.: Matlab Optimization Toolbox. The Mathworks Inc., Natick (2010)Google Scholar
  27. 27.
    Tijdeman, H.: On the propagation of sound waves in cylindrical tubes. J. Sound Vib. 39, 1–33 (1975)Google Scholar
  28. 28.
    van den Hof, P.M.J., Bombois, X.J.A.: System Identification for Control. Lecture Notes, DISC, Delft (2007)Google Scholar
  29. 29.
    van der Heijden, F.: Image Based Measurement Systems: Object Recognition and Parameter Estimation. Wiley, Hoboken (1995)Google Scholar
  30. 30.
    Wijshoff, H.M.A.: The dynamics of the piezo printhead operation. Phys. Rep. 491, 77–177 (2010)Google Scholar
  31. 31.
    Zhou, K., Doyle, J.C.: Essentials of Robust Control. Prentice Hall, Eaglewood Cliffs (1998)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sjirk Koekebakker
    • 1
    Email author
  • Mohamed Ezzeldin
    • 2
  • Amol Khalate
    • 3
  • Robert Babuška
    • 3
  • Xavier Bombois
    • 3
  • Paul van den Bosch
    • 2
  • Gérard Scorletti
    • 4
  • Siep Weiland
    • 2
  • Herman Wijshoff
    • 1
  • René Waarsing
    • 1
  • Wim de Zeeuw
    • 1
  1. 1.Océ-Technologies B.V.VenloThe Netherlands
  2. 2.Control Systems group, Faculty of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Delft Center on Systems and Control, Faculty of Mechanical, Maritime and Material EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Laboratoire AmpèreEcole Centrale de LyonEcully CedexFrance

Personalised recommendations