Aspects of Adaptive Systems Engineering: A Professional Printing Case

  • Roelof HambergEmail author
  • René Waarsing
  • Twan Basten
  • Frans Reckers
  • Jacques Verriet
  • Lou Somers
Part of the Embedded Systems book series (EMSY, volume 22)


Adaptive systems engineering comprises two individual themes, adaptive systems and systems engineering, and their interaction. In the Octopus project, some challenges that arise from these themes have been addressed in the realm of professional printers. This chapter serves to place these challenges in a common context, which is done along the BAPO structuring principle (Business, Architecture, Process, Organisation). The main research challenges addressed in the project appear in the architecture and process parts of BAPO. For architecture, patterns for behaviour and self-reflection about behaviour are the most relevant elements in the context of adaptive systems. For the architecting process, support through models in a model-based paradigm brings advantages in specification, options exploration and analysis, and synthesis of adaptive systems.


System Behaviour Adaptive System Model Predictive Control System Quality Design Option 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been carried out as part of the Octopus project with Océ-Technologies B.V. under the responsibility of the Embedded Systems Institute. This project is partially supported by the Netherlands Ministry of Economic Affairs, Agriculture, and Innovation under the BSIK program.


  1. 1.
    Agent iSolutions: Accessed June 2012
  2. 2.
    Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. Lecture Notes in Computer Science, vol. 3098, pp. 87–124. Springer, Berlin (2004)Google Scholar
  3. 3.
    Boehm, B.W.: A spiral model of software development and enhancement. SIGSOFT Softw. Eng. Notes 11, 14–24 (1986)Google Scholar
  4. 4.
    Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., Kanade, T.: Footstep planning for the Honda ASIMO humanoid. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 629–634 (2005)Google Scholar
  5. 5.
    Cogniteam: Accessed June 2012
  6. 6.
    de Roo, A.J.: Managing software complexity of adaptive systems. Ph.D. thesis, University of Twente, Enschede (2012)Google Scholar
  7. 7.
    Dohmen, L.A.J., Somers, L.J.: Experiences and lessons learned using UML-RT to develop embedded printer software. In: Oivo, M., Komi-Sirviö, S. (eds.) Product Focused Software Process Improvement. Lecture Notes in Computer Science, vol. 2559, pp. 475–484. Springer, Berlin (2002)Google Scholar
  8. 8.
    Eisner, H.: Essentials of Project and Systems Engineering Management. Wiley, Hoboken (2008)Google Scholar
  9. 9.
    Estefan, J.A.: Survey of model-based systems engineering (MBSE) methodologies. Technical Report INCOSE-TD-2007-003-01, INCOSE, San Diego (2008)Google Scholar
  10. 10.
    Fitzgerald, B.: Formalized systems development methodologies: A critical perspective. Inf. Syst. J. 6, 3–23 (1996)Google Scholar
  11. 11.
    Geelen, H.: Reference architecture from management perspective. MOOSE seminar (2004)Google Scholar
  12. 12.
    Gheorghita, S.V., Palkovic, M., Hamers, J., Vandecappelle, A., Mamagkakis, S., Basten, T., Eeckhout, L., Corporaal, H., Catthoor, F., Vandeputte, F., de Bosschere, K.: System-scenario-based design of dynamic embedded systems. ACM Trans. Des. Autom. Electron. Syst. 14, 3:1–3:45 (2009)Google Scholar
  13. 13.
    Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: FM 2006: Formal Methods. Lecture Notes in Computer Science, vol. 4085, pp. 1–15. Springer, Berlin (2006)Google Scholar
  14. 14.
    Hobbelen, D., de Boer, T., Wisse, M.: System overview of bipedal robots Flame and TUlip: Tailor-made for limit cycle walking. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 2008 (IROS 2008), pp. 2486–2491 (2008)Google Scholar
  15. 15.
    Hoffmann, H., Maggio, M., Santambrogio, M.D., Leva, A., Agarwal, A.: SEEC: A framework for self-aware computing. Technical Report MIT-CSAIL-TR-2010-049, MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA (2010)Google Scholar
  16. 16.
    Jensen, F.V.: An Introduction to Bayesian Networks. UCL, London (1996)Google Scholar
  17. 17.
    Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of Concurrent Systems. Springer, Berlin (2009)Google Scholar
  18. 18.
    Kemperman, J.E.B., van Engelen, M.L.: Operationalizing the customer value concept. In: Proceedings of the 28th EMAC Conference: Marketing and Competition in the information age (1999)Google Scholar
  19. 19.
    Kienhuis, B., Deprettere, E., Vissers, K., van der Wolf, P.: An approach for quantitative analysis of application-specific dataflow architectures. In: Proceedings of the 1997 IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP ’97), pp. 338–349 (1997)Google Scholar
  20. 20.
    Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison-Wesley Pearson Education, Inc., Boston (2004)Google Scholar
  21. 21.
    Martín H., J.A., de Lope, J., Maravall, D.: Adaptation, anticipation and rationality in natural and artificial systems: Computational paradigms mimicking nature. Nat. Comput. 8, 757–775 (2009)Google Scholar
  22. 22.
    Mathijssen, R. (ed.): Trader: Reliability of High-Volume Consumer Products. Embedded Systems Institute, Eindhoven (2007)Google Scholar
  23. 23.
    Muller, G.: Systems Architecting: A Business Perspective. CRC, Boca Raton (2012)Google Scholar
  24. 24.
    Nossal, R., Lang, R.: Model-based system development: An approach to building X-by-wire applications. IEEE Micro 22, 56–63 (2002)Google Scholar
  25. 25.
    Papalambros, P.Y., Wilde, D.J.: Principles of Optimal Design: Modeling and Computation. Cambridge University Press, Cambridge (2000)Google Scholar
  26. 26.
    Rao, A.S., Georgeff, M.P.: BDI-agents: From theory to practice. In: Proceedings of the First International Conference on Multiagent Systems (ICMAS’95), pp. 312–319 (1995)Google Scholar
  27. 27.
    Saxena, T., Karsai, G.: MDE-based approach for generalizing design space exploration. In: Petriu, D., Rouquette, N. Haugen Ø. (eds.) Model Driven Engineering Languages and Systems. Lecture Notes in Computer Science, vol. 6394, pp. 46–60. Springer, Berlin (2010)Google Scholar
  28. 28.
    Sommerville, I.: Software Engineering, 3rd edn. Addison-Wesley, Wokingham (1989)Google Scholar
  29. 29.
    Stuijk, S., Geilen, M., Basten, T.: SDF3: SDF For Free. In: Proceedings of the Sixth International Conference on Application of Concurrency to System Design (ACSD 2006), pp. 276–278 (2006)Google Scholar
  30. 30.
    The Office of the Deputy Assistant Secretary of Defense for Systems Engineering: Accessed June 2012
  31. 31.
    Umeda, Y., Kondoh, S., Shimomura, Y., Tomiyama, T.: Development of design methodology for upgradable products based on function-behavior-state modeling. Artif. Intel. Eng. Des. Anal. Manuf. 19, 161–182 (2005)Google Scholar
  32. 32.
    van de Laar, P., Punter, T. (eds.): Views on Evolvability of Embedded Systems. Springer, Dordrecht (2011)Google Scholar
  33. 33.
    van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action: The Best Industrial Practice in Product Line Engineering. Springer, Berlin (2007)Google Scholar
  34. 34.
    Visser, P.M., Groothuis, M.A., Broenink, J.F.: Multi-disciplinary design support using hardware-in-the-loop simulation. In: Proceedings of the 5th PROGRESS Symposium on Embedded Systems, pp. 206–213 (2004)Google Scholar
  35. 35.
    Winikoff, M.: JACKTM intelligent agents: An industrial strength platform. In: Bordini, R., Dastani, M., Dix, J., El Fallah Seghrouchni, A., Weiss, G. (eds.) Multi-Agent Programming. Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 15, pp. 175–193. Springer, New York (2005)Google Scholar
  36. 36.
    Zadeh, L.A.: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control 8, 59–60 (1963)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Roelof Hamberg
    • 1
    Email author
  • René Waarsing
    • 2
  • Twan Basten
    • 1
    • 3
  • Frans Reckers
    • 1
  • Jacques Verriet
    • 1
  • Lou Somers
    • 2
  1. 1.Embedded Systems InstituteEindhovenThe Netherlands
  2. 2.Océ-Technologies B.V.VenloThe Netherlands
  3. 3.Electronic Systems group, Faculty of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations