Advertisement

Statistical Learning and Its Consequences

  • Nicholas B. Turk-Browne
Chapter
Part of the Nebraska Symposium on Motivation book series (NSM)

Abstract

Statistical learning refers to an unconscious cognitive process in which repeated patterns, or regularities, are extracted from the sensory environment. In this chapter, I describe what is currently known about statistical learning. First, I classify types of regularities that exist in the visual environment. Second, I introduce a family of experimental paradigms that have been used to study statistical learning in the laboratory. Third, I review a series of behavioral and functional neuroimaging studies that seek to uncover the underlying nature of statistical learning. Finally, I consider ways in which statistical learning may be important for perception, attention, and visual search. The goals of this chapter are thus to highlight the prevalence of regularities, to explain how they are extracted by the mind and brain, and to suggest that the resulting knowledge has widespread consequences for other aspects of cognition.

Keywords

Regularities Memory systems Perception Selective attention Generalization fMRI 

References

  1. Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1998). An area within human ventral cortex sensitive to “building” stimuli: Evidence and implications. Neuron, 21, 373–383.PubMedCrossRefGoogle Scholar
  2. Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features outside the focus of attention. Psychological Science, 19, 392–398.PubMedCrossRefGoogle Scholar
  3. Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12, 157–162.PubMedCrossRefGoogle Scholar
  4. Avrahami, J., & Kareev, Y. (1994). The emergence of events. Cognition, 53, 239–261.PubMedCrossRefGoogle Scholar
  5. Baillargeon, R. (1987). Object permanence in 3½- and 4½-month-old infants. Developmental Psychology, 23, 655–664.CrossRefGoogle Scholar
  6. Baillargeon, R. (2008). Innate ideas revisited: For a principle of persistence in infants’ physical reasoning. Perspectives on Psychological Science, 3, 2–13.PubMedCrossRefGoogle Scholar
  7. Baldwin, D., Andersson, A., Saffran, J., & Meyer, M. (2008). Segmenting dynamic human action via statistical structure. Cognition, 106, 1382–1407.PubMedCrossRefGoogle Scholar
  8. Beck, M. R., Angelone, B. L., & Levin, D.T. (2004). Knowledge about the probability of change affects change detection performance. Journal of Experimental Psychology: Human Perception and Performance, 30, 778–791.PubMedCrossRefGoogle Scholar
  9. Biederman, I., Mezzanotte, R. J., & Rabinowitz, J. C. (1982). Scene perception: Detecting and judging objects undergoing relational violations. Cognitive Psychology, 14, 143–177.PubMedCrossRefGoogle Scholar
  10. Chong, S. C., & Treisman, A. (2003). Representation of statistical properties. Vision Research, 43, 393–404.PubMedCrossRefGoogle Scholar
  11. Chong, S. C., & Treisman, A. (2005). Attentional spread in the statistical processing of visual displays. Perception & Psychophysics, 67, 1–13.CrossRefGoogle Scholar
  12. Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71.PubMedCrossRefGoogle Scholar
  13. Chun, M. M., & Jiang, Y. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10, 360–365.CrossRefGoogle Scholar
  14. Chun, M. M., & Phelps, E. A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neuroscience, 2, 844–847.PubMedCrossRefGoogle Scholar
  15. Cohen, N. J., & Eichenbaum, H. (1993). Memory, Amnesia, and the Hippocampal System. Cambridge: MIT Press.Google Scholar
  16. Conway, C. M., & Christiansen, M. H. (2005). Modality-constrained statistical learning of tactile, visual, and auditory sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition B31, 24–39.Google Scholar
  17. Davenport, J. L., & Potter, M. C. (2004). Scene consistency in object and background perception. Psychological Science, 15, 559–564.PubMedCrossRefGoogle Scholar
  18. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.PubMedCrossRefGoogle Scholar
  19. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458.PubMedCrossRefGoogle Scholar
  20. Endo, N., & Takeda, Y. (2004). Selective learning of spatial configuration and object identity in visual search. Perception & Psychophysics, 66, 293–302.CrossRefGoogle Scholar
  21. Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392, 598–601.PubMedCrossRefGoogle Scholar
  22. Graf Estes, K. M., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can infants map meaning to newly segmented words? Psychological Science, 18, 254–260.CrossRefGoogle Scholar
  23. Fahle, M., & Poggio, T. (2002). Perceptual Learning. Cambridge: MIT Press.Google Scholar
  24. Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12, 499–504.PubMedCrossRefGoogle Scholar
  25. Fiser, J., & Aslin, R. N. (2002). Statistical learning of new visual feature combinations by infants. Proceedings of the National Academy of Sciences USA, 99, 15822–15826.Google Scholar
  26. Flowers, J. H., & Lohr, D. J. (1985). How does familiarity affect visual search for letter strings? Perception & Psychophysics, 37, 557–567.CrossRefGoogle Scholar
  27. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.PubMedCrossRefGoogle Scholar
  28. Gallistel, C. R. (2009). The importance of proving the null. Psychological Review, 116, 439–453.PubMedCrossRefGoogle Scholar
  29. Gebhart, A. L., Aslin, R. N., & Newport, E. L. (2009). Changing structures in midstream: Learning along the statistical garden path. Cognitive Science, 33, 1087–1116.PubMedCrossRefGoogle Scholar
  30. Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67, 1252–1268.CrossRefGoogle Scholar
  31. Giroux, I., & Rey, A. (2009). Lexical and sub-lexical units in speech perception. Cognitive Science, 33, 260–272.PubMedCrossRefGoogle Scholar
  32. Goldstone, R. L. (1998). Perceptual learning. Annual Review of Psychology, 49, 585–612.PubMedCrossRefGoogle Scholar
  33. Henderson, J. M., & Hollingworth, A. (2003). Global transsaccadic change blindness during scene perception. Psychological Science, 14, 493–497.PubMedCrossRefGoogle Scholar
  34. Henderson, J. M., Weeks, P. A., & Hollingworth, A. (1999). The effects of semantic consistency on eye movements during complex scene viewing. Journal of Experimental Psychology: Human Perception and Performance, 25, 210–228.CrossRefGoogle Scholar
  35. Hollingworth, A. (2009). Two forms of scene memory guide visual search: Memory for scene context and memory for the binding of target object to scene location. Visual Cognition, 17, 273–291.CrossRefGoogle Scholar
  36. Hollingworth, A., & Henderson, J. M. (1998). Does consistent scene context facilitate object perception? Journal of Experimental Psychology: General, 127, 398–415.CrossRefGoogle Scholar
  37. Hunt, R. H., & Aslin, R. N. (2001). Statistical learning in a serial reaction time task: Access to separable statistical cues by individual learners. Journal of Experimental Psychology: General, 130, 658–680.CrossRefGoogle Scholar
  38. Jiang, Y., & Song, J. -H. (2005). Hyperspecificity in visual implicit learning: Learning of spatial layout is contingent on item identity. Journal of Experimental Psychology: Human Perception and Performance, 31, 1439–1448.PubMedCrossRefGoogle Scholar
  39. Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83, B35–B42.PubMedCrossRefGoogle Scholar
  40. Kubovy, M. (1988). Should we resist the seductiveness of the space:time::vision:audition analogy. Journal of Experimental Psychology: Human Perception and Performance, 14, 318–320.CrossRefGoogle Scholar
  41. Kunar, M. A., Flusberg, S., Horowitz, T. S., & Wolfe, J. M. (2007). Does contextual cuing guide the deployment of attention? Journal of Experimental Psychology: Human Perception and Performance, 33, 816–828.PubMedCrossRefGoogle Scholar
  42. Lieberman, M. D., Chang, G. Y., Chiao, J., Bookheimer, S. Y., & Knowlton, B. J. (2004). An event-related fMRI study of artificial grammar learning in a balanced chunk strength design. Journal of Cognitive Neuroscience, 16, 427–438.PubMedCrossRefGoogle Scholar
  43. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–280.PubMedCrossRefGoogle Scholar
  44. Mayr, U. (1996). Spatial attention and implicit sequence learning: Evidence for independent learning of spatial and nonspatial sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 350–364.PubMedCrossRefGoogle Scholar
  45. Miyashita, Y. (1993). Inferior temporal cortex: Where visual perception meets memory. Annual Review of Neuroscience, 16, 245–263.PubMedCrossRefGoogle Scholar
  46. Neider, M. B., & Zelinsky, G. J. (2006). Scene context guides eye movements during visual search. Vision Research, 46, 614–621.PubMedCrossRefGoogle Scholar
  47. Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research, 155, 23–36.PubMedCrossRefGoogle Scholar
  48. Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.PubMedCrossRefGoogle Scholar
  49. Olson, I.R., & Chun, M.M. (2001). Temporal contextual cuing of visual attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 1299–1313.PubMedCrossRefGoogle Scholar
  50. Orbán, G., Fiser, J., Aslin, R. N., & Lengyel, M. (2008). Bayesian learning of visual chunks by human observers. Proceedings of the National Academy of Sciences USA, 105, 2745–2750.Google Scholar
  51. Palmer, S. E. (1975). The effects of contextual scenes on the identification of objects. Memory & Cognition, 3, 519–526.CrossRefGoogle Scholar
  52. Reber, A. S. (1976). Implicit learning of synthetic languages: The role of instructional set. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2, 88–94.Google Scholar
  53. Ryan, J. D., Althoff, R. R., Whitlow, S., & Cohen, N. J. (2000). Amnesia is a deficit in relational memory. Psychological Science, 11, 454–461.PubMedCrossRefGoogle Scholar
  54. Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996a). Statistical learning by 8-month-old infants. Science, 274, 1926–1928.CrossRefGoogle Scholar
  55. Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996b). Word segmentation: The role of distributional cues. Journal of Memory & Language, 35, 606–621.CrossRefGoogle Scholar
  56. Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70, 27–52.PubMedCrossRefGoogle Scholar
  57. Sasaki, Y., Nanez, J. E., & Watanabe, T. (2010). Advances in visual perceptual learning and plasticity. Nature Reviews Neuroscience, 11, 53–60.PubMedCrossRefGoogle Scholar
  58. Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37, 1013–1025.PubMedCrossRefGoogle Scholar
  59. Scholl, B. J. (2001). Objects and attention: The state of the art. Cognition, 80, 1–46.PubMedCrossRefGoogle Scholar
  60. Seger, C. A., & Cincotta, C. M. (2005). The roles of the caudate nucleus in human classification learning. Journal of Neuroscience, 25, 2941–2951.PubMedCrossRefGoogle Scholar
  61. Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24, 1193–1216.PubMedCrossRefGoogle Scholar
  62. Stevens, W. D., Buckner, R. L., & Schacter, D. L. (2010). Correlated low-frequency BOLD fluctuations in the resting human brain are modulated by recent experience in category-preferential visual regions. Cerebral Cortex, 20, 1997–2006.PubMedCrossRefGoogle Scholar
  63. Thiessen, E. D., & Saffran, J. R. (2003). When cues collide: Use of stress and statistical cues to word boundaries by 7-to 9-month-old infants. Developmental Psychology, 39, 706–716.PubMedCrossRefGoogle Scholar
  64. Toni, I., Krams, M., Turner, R., & Passingham, R. E. (1998). The time course of changes during motor sequence learning: A whole-brain fMRI study. NeuroImage, 8, 50–61.PubMedCrossRefGoogle Scholar
  65. Toro, J. M., & Trobalón, J. B. (2005). Statistical computations over a speech stream in a rodent. Perception & Psychophysics, 67, 867–875.CrossRefGoogle Scholar
  66. Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113, 766–786.PubMedCrossRefGoogle Scholar
  67. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.PubMedCrossRefGoogle Scholar
  68. Treisman, A., & Souther, J. (1985). Search asymmetry: A diagnostic for preattentive processing of separable features. Journal of Experimental Psychology: General, 114, 285–310.CrossRefGoogle Scholar
  69. Turk-Browne, N. B., & Scholl, B. J. (2009). Flexible visual statistical learning: Transfer across space and time. Journal of Experimental Psychology: Human Perception and Performance, 35, 195–202.PubMedCrossRefGoogle Scholar
  70. Turk-Browne, N. B., Jungé, J., & Scholl, B. J. (2005). The automaticity of visual statistical learning. Journal of Experimental Psychology: General, 134, 552–564.CrossRefGoogle Scholar
  71. Turk-Browne, N. B., Isola, P. J., Scholl, B. J., & Treat, T. A. (2008). Multidimensional visual statistical learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 399–407.PubMedCrossRefGoogle Scholar
  72. Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. Journal of Cognitive Neuroscience, 21, 1934–1945.PubMedCrossRefGoogle Scholar
  73. Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit perceptual anticipation triggered by statistical learning. Journal of Neuroscience, 30, 11177–11187.PubMedCrossRefGoogle Scholar
  74. Umemoto, A., Scolari, M., Vogel, E. K. & Awh, E. (2010). Statistical learning induces discrete shifts in the allocation of working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 36, 1419–1429.PubMedCrossRefGoogle Scholar
  75. Watanabe, T., Náñez, J. E., & Sasaki, Y. (2001). Perceptual learning without perception. Nature, 413, 844–848.PubMedCrossRefGoogle Scholar
  76. Wolfe, J. M. (2001). Asymmetries in visual search: An introduction. Perception & Psychophysics, 63, 381–389.CrossRefGoogle Scholar
  77. Zacks, J. M., & Tversky, B. (2001). Event structure in perception and conception. Psychological Bulletin, 127, 3–21.PubMedCrossRefGoogle Scholar
  78. Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20, 423–428.PubMedCrossRefGoogle Scholar
  79. Zhao, J., Ngo, N., McKendrick, R., & Turk-Browne, N. B. (2011). Mutual interference between statistical summary perception and statistical learning. Psychological Science, 22, 1212–1219.PubMedCrossRefGoogle Scholar
  80. Zhao, J., Al-Aidroos, N., & Turk-Browne, N. B. (in press). Attention is spontaneously biased towards regularities. Psychological Science.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of PsychologyPrinceton UniversityPrincetonUSA

Personalised recommendations