New Insights into the Contribution of Arterial NCX to the Regulation of Myogenic Tone and Blood Pressure

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)


Plasma membrane protein Na+/Ca2+ exchanger (NCX) in vascular smooth muscle (VSM) cells plays an important role in intracellular Ca2+ homeostasis, Ca2+ signaling, and arterial contractility. Recent evidence in intact animals reveals that VSM NCX type 1 (NCX1) is importantly involved in the control of arterial blood pressure (BP) in the normal state and in hypertension. Increased expression of vascular NCX1 has been implicated in human primary pulmonary hypertension and several salt-dependent hypertensive animal models. Our aim is to determine the molecular and physiological mechanisms by which vascular NCX influences vasoconstriction and BP normally and in salt-dependent hypertension. Here, we describe the relative contribution of VSM NCX1 to Ca2+ signaling and arterial contraction, including recent data from transgenic mice (NCX1smTg/Tg, overexpressors; NCX1sm−/−, knockouts) that has begun to elucidate the specific contributions of NCX to BP regulation. Arterial contraction and BP correlate with the level of NCX1 expression in smooth muscle: NCX1sm−/− mice have decreased arterial myogenic tone (MT), vasoconstriction, and low BP. NCX1smTg/Tg mice have high BP and are more sensitive to salt; their arteries exhibit upregulated transient receptor potential canonical channel 6 (TRPC6) protein, increased MT, and vasoconstriction. These observations suggest that NCX is a key component of certain distinct signaling pathways that activate VSM contraction in response to stretch (i.e., myogenic response) and to activation of certain G-protein-coupled receptors. Arterial NCX expression and mechanisms that control the local (sub-plasma membrane) Na+ gradient, including cation-selective receptor-operated channels containing TRPC6, regulate arterial Ca2+ and constriction, and thus BP.


Vascular smooth muscle NCX1 knockdown NCX1 overexpression Calcium Myogenic tone Vasoconstriction Blood pressure Membrane potential TRPC SEA0400 


  1. A. Arnon, J.M. Hamlyn, M.P. Blaustein, Na+ entry via store-operated channels modulates Ca2+ signaling in arterial myocytes. Am. J. Physiol. Cell Physiol. 278, C163–C173 (2000)PubMedGoogle Scholar
  2. T. Ashida, H. Yoshimi, Y. Kawano, H. Matsuoka, T. Omae, Effect of cilazapril and salt on Ca2+ extrusion in arterial smooth muscle of Dahl rats. Am. J. Hypertens. 10, 107S–111S (1997)PubMedCrossRefGoogle Scholar
  3. Y.M. Bae, A. Kim, Y.J. Lee, W. Lim, Y.H. Noh, E.J. Kim, J. Kim, T.K. Kim, S.W. Park, B. Kim, S.I. Cho, D.K. Kim, W.K. Ho, Enhancement of receptor-operated cation current and TRPC6 expression in arterial smooth muscle cells of deoxycorticosterone acetate-salt hypertensive rats. J. Hypertens. 25, 809–817 (2007)PubMedCrossRefGoogle Scholar
  4. S.G. Baryshnikov, M.V. Pulina, A. Zulian, C.I. Linde, V.A. Golovina, Orai1, a critical component of store-operated Ca2+ entry, is functionally associated with Na+/Ca2+ exchanger and plasma membrane Ca2+ pump in proliferating human arterial myocytes. Am. J. Physiol. Cell Physiol. 297, C1103–C1112 (2009)PubMedCrossRefGoogle Scholar
  5. M.P. Blaustein, W.J. Lederer, Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999)PubMedGoogle Scholar
  6. M.P. Blaustein, M. Juhaszova, V.A. Golovina, P.J. Church, E.F. Stanley, Na/Ca exchanger and PMCA localization in neurons and astrocytes: functional implications. Ann. N. Y. Acad. Sci. 976, 356–366 (2002)PubMedCrossRefGoogle Scholar
  7. M.P. Blaustein, J. Zhang, L. Chen, H. Song, H. Raina, S.P. Kinsey, M. Izuka, T. Iwamoto, M.I. Kotlikoff, J.B. Lingrel, K.D. Philipson, W.G. Wier, J.M. Hamlyn, The pump, the exchanger, and endogenous ouabain: signaling mechanisms that link salt retention to hypertension. Hypertension 53, 291–298 (2009)PubMedCrossRefGoogle Scholar
  8. M.P. Blaustein, F.H. Leenen, L. Chen, V.A. Golovina, J.M. Hamlyn, T.L. Pallone, J.W. Van Huysse, J. Zhang, W.G. Wier, How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Am. J. Physiol. Heart Circ. Physiol. 302, H1031–H1049 (2011)PubMedCrossRefGoogle Scholar
  9. S. Chen, B.D. Roufogalis, Enhanced 45Ca2+ efflux in cultured vascular smooth muscle cells from spontaneously hypertensive rats. Am. J. Hypertens. 7, 597–602 (1994)PubMedGoogle Scholar
  10. L. Chen, J. Zhang, X. Hu, K.D. Philipson, S.M. Scharf, The Na+/Ca2+ exchanger-1 mediates left ventricular dysfunction in mice with chronic intermittent hypoxia. J. Appl. Physiol. 109, 1675–1685 (2010)PubMedCrossRefGoogle Scholar
  11. D.A. Coleman, R.A. Khalil, Physiologic increases in extracellular sodium salt enhance coronary vasoconstriction and Ca2+ entry. J. Cardiovasc. Pharmacol. 40, 58–66 (2002)PubMedCrossRefGoogle Scholar
  12. G. D’Angelo, M.J. Davis, G.A. Meininger, Calcium and mechanotransduction of the myogenic response. Am. J. Physiol. Heart Circ. Physiol. 273, H175–H182 (1997)Google Scholar
  13. J.M. Dai, H. Syyong, J. Navarro-Dorado, S. Redondo, M. Alonso, C. van Breemen, T. Tejerina, A comparative study of alpha-adrenergic receptor mediated Ca2+ signals and contraction in intact human and mouse vascular smooth muscle. Eur. J. Pharmacol. 629, 82–88 (2010)PubMedCrossRefGoogle Scholar
  14. M.J. Davis, M.A. Hill, Signaling mechanisms underlying the vascular myogenic response. Physiol. Rev. 79, 387–423 (1999)PubMedGoogle Scholar
  15. H. Dong, Y. Jiang, C.R. Triggle, X. Li, J. Lytton, Novel role for K+-dependent Na+/Ca2+ exchangers in regulation of cytoplasmic free Ca2+ and contractility in arterial smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 291, H1226–H1235 (2006)PubMedCrossRefGoogle Scholar
  16. M.V. Donoso, M. Steiner, J.P. Huidobro-Toro, BIBP 3226, suramin and prazosin identify neuropeptide Y, adenosine 5’-triphosphate and noradrenaline as sympathetic cotransmitters in the rat arterial mesenteric bed. J. Pharmacol. Exp. Ther. 282, 691–698 (1997)PubMedGoogle Scholar
  17. S. Earley, B.J. Waldron, J.E. Brayden, Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ. Res. 95, 922–929 (2004)PubMedCrossRefGoogle Scholar
  18. M. Esler, M. Rumantir, D. Kaye, G. Jennings, J. Hastings, F. Socratous, G. Lambert, Sympathetic nerve biology in essential hypertension. Clin. Exp. Pharmacol. Physiol. 28, 986–989 (2001)PubMedCrossRefGoogle Scholar
  19. N. Fameli, K.H. Kuo, C. van Breemen, A model for the generation of localized transient [Na+] elevations in vascular smooth muscle. Biochem. Biophys. Res. Commun. 389, 461–465 (2009)PubMedCrossRefGoogle Scholar
  20. S.K. Fellner, W.J. Arendshorst, Angiotensin II-stimulated Ca2+ entry mechanisms in afferent arterioles: role of transient receptor potential canonical channels and reverse Na+/Ca2+ exchange. Am. J. Physiol. Renal Physiol. 294, F212–F219 (2008)PubMedCrossRefGoogle Scholar
  21. R. Floyd, S. Wray, Calcium transporters and signaling in smooth muscles. Cell Calcium 42, 467–476 (2007)PubMedCrossRefGoogle Scholar
  22. V.A. Golovina, M.P. Blaustein, Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275, 1643–1648 (1997)PubMedCrossRefGoogle Scholar
  23. A.L. Gonzales, Z.I. Garcia, G.C. Amberg, S. Earley, Pharmacological inhibition of TRPM4 hyperpolarizes vascular smooth muscle. Am. J. Physiol. Cell Physiol. 299, C1195–C1202 (2010)PubMedCrossRefGoogle Scholar
  24. G. Grassi, Sympathetic neural activity in hypertension and related diseases. Am. J. Hypertens. 23, 1052–1060 (2010)PubMedCrossRefGoogle Scholar
  25. J.M. Hamlyn, R. Ringel, J. Schaeffer, P.D. Levinson, B.P. Hamilton, A.A. Kowarski, M.P. Blaustein, A circulating inhibitor of (Na+ + K+)ATPase associated with essential hypertension. Nature 300, 650–652 (1982)PubMedCrossRefGoogle Scholar
  26. T. Hasegawa, F. Masugi, T. Ogihara, Y. Kumahara, Increase in plasma ouabain-like inhibitor of Na+, K+-ATPase with high sodium intake in patients with essential hypertension. J. Clin. Hypertens. 3, 419–429 (1987)PubMedGoogle Scholar
  27. T. Hashimoto, M. Kihara, J. Ishida, N. Imai, S. Yoshida, Y. Toya, A. Fukamizu, H. Kitamura, S. Umemura, Apelin stimulates myosin light chain phosphorylation in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 26, 1267–1272 (2006)PubMedCrossRefGoogle Scholar
  28. S.A. Henderson, J.I. Goldhaber, J.M. So, T. Han, C. Motter, A. Ngo, C. Chantawansri, M.R. Ritter, M. Friedlander, D.A. Nicoll, J.S. Frank, M.C. Jordan, K.P. Roos, R.S. Ross, K.D. Philipson, Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac-specific knockout of NCX1. Circ. Res. 95, 604–611 (2004)PubMedCrossRefGoogle Scholar
  29. M.A. Hill, M.J. Davis, G.A. Meininger, S.J. Potocnik, T.V. Murphy, Arteriolar myogenic signalling mechanisms: Implications for local vascular function. Clin. Hemorheol. Microcirc. 34, 67–79 (2006)PubMedGoogle Scholar
  30. G.D. Hirst, F.R. Edwards, Sympathetic neuroeffector transmission in arteries and arterioles. Physiol. Rev. 69, 546–604 (1989)PubMedGoogle Scholar
  31. S. Horiguchi, J. Watanabe, H. Kato, S. Baba, T. Shinozaki, M. Miura, M. Fukuchi, Y. Kagaya, K. Shirato, Contribution of Na+/Ca2+ exchanger to the regulation of myogenic tone in isolated rat small arteries. Acta Physiol. Scand. 173, 167–173 (2001)PubMedCrossRefGoogle Scholar
  32. T. Iwamoto, S. Kita, A. Uehara, I. Imanaga, T. Matsuda, A. Baba, T. Katsuragi, Molecular determinants of Na+/Ca2+ exchange (NCX1) inhibition by SEA0400. J. Biol. Chem. 279, 7544–7553 (2004a)PubMedCrossRefGoogle Scholar
  33. T. Iwamoto, S. Kita, J. Zhang, M.P. Blaustein, Y. Arai, S. Yoshida, K. Wakimoto, I. Komuro, T. Katsuragi, Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nat. Med. 10, 1193–1199 (2004b)PubMedCrossRefGoogle Scholar
  34. P.E. Jensen, M.J. Mulvany, C. Aalkjaer, H. Nilsson, H. Yamaguchi, Free cytosolic Ca2+ measured with Ca2+-selective electrodes and fura 2 in rat mesenteric resistance arteries. Am. J. Physiol. 265, H741–H746 (1993)PubMedGoogle Scholar
  35. R.P. Johnson, A.F. El-Yazbi, K. Takeya, E.J. Walsh, M.P. Walsh, W.C. Cole, Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J. Physiol. 587, 2537–2553 (2009)PubMedCrossRefGoogle Scholar
  36. M. Juhaszova, A. Ambesi, G.E. Lindenmayer, R.J. Bloch, M.P. Blaustein, Na+-Ca2+ exchanger in arteries: identification by immunoblotting and immunofluorescence microscopy. Am. J. Physiol. Cell Physiol. 266, C234–C242 (1994)Google Scholar
  37. T. Kashihara, K. Nakayama, T. Matsuda, A. Baba, T. Ishikawa, Role of Na+/Ca2+ exchanger-mediated Ca2+ entry in pressure-induced myogenic constriction in rat posterior cerebral arteries. J. Pharmacol. Sci. 110, 218–222 (2009)PubMedCrossRefGoogle Scholar
  38. J.K. Kim, S.J. Kim, Y.C. Kim, I. So, K.W. Kim, Influence of extracellular Na+ removal on cytosolic Ca2+ concentration in smooth muscle cells of rabbit cerebral artery. J. Smooth Muscle Res. 35, 135–145 (1999)PubMedCrossRefGoogle Scholar
  39. J. Kiraku, T. Sugiyama, T. Ashida, N. Takahashi, J. Fujii, M. Kuro-o, R. Nagai, Increases in intracellular calcium of arterial smooth muscle cells in transgenic mice overexpressing Na+/H+ exchanger. J. Cardiovasc. Pharmacol. 35, 511–513 (2000)PubMedCrossRefGoogle Scholar
  40. H.J. Knot, M.T. Nelson, Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J. Physiol. 508, 199–209 (1998)PubMedCrossRefGoogle Scholar
  41. N. Kotecha, M.A. Hill, Myogenic contraction in rat skeletal muscle arterioles: smooth muscle membrane potential and Ca2+ signaling. Am. J. Physiol. Heart Circ. Physiol. 289, H1326–H1334 (2005)PubMedCrossRefGoogle Scholar
  42. G.J. Lagaud, V. Randriamboavonjy, G. Roul, J.C. Stoclet, R. Andriantsitohaina, Mechanism of Ca2+ release and entry during contraction elicited by norepinephrine in rat resistance arteries. Am. J. Physiol. Heart Circ. Physiol. 276, H300–H308 (1999)Google Scholar
  43. C. Lamont, W.G. Wier, Evoked and spontaneous purinergic junctional Ca2+ transients (jCaTs) in rat small arteries. Circ. Res. 91, 454–456 (2002)PubMedCrossRefGoogle Scholar
  44. C. Lamont, W.G. Wier, Different roles of ryanodine receptors and inositol (1,4,5)-trisphosphate receptors in adrenergically stimulated contractions of small arteries. Am. J. Physiol. Heart Circ. Physiol. 287, H617–H625 (2004)PubMedCrossRefGoogle Scholar
  45. C. Lamont, E. Vainorius, W.G. Wier, Purinergic and adrenergic Ca2+ transients during neurogenic contractions of rat mesenteric small arteries. J. Physiol. 549, 801–808 (2003)PubMedCrossRefGoogle Scholar
  46. W.J. Lederer, E. Niggli, R.W. Hadley, Sodium-calcium exchange in excitable cells: fuzzy space. Science 248, 283 (1991)CrossRefGoogle Scholar
  47. S.L. Lee, A.S. Yu, J. Lytton, Tissue-specific expression of Na+-Ca2+ exchanger isoforms. J. Biol. Chem. 269, 14849–14852 (1994)PubMedGoogle Scholar
  48. C.H. Lee, D. Poburko, P. Sahota, J. Sandhu, D.O. Ruehlmann, C. van Breemen, The mechanism of phenylephrine-mediated [Ca2+]i oscillations underlying tonic contraction in the rabbit inferior vena cava. J. Physiol. 534, 641–650 (2001)PubMedCrossRefGoogle Scholar
  49. M.Y. Lee, H. Song, J. Nakai, M. Ohkura, M.I. Kotlikoff, S.P. Kinsey, V.A. Golovina, M.P. Blaustein, Local subplasma membrane Ca2+ signals detected by a tethered Ca2+ sensor. Proc. Natl. Acad. Sci. U. S. A. 103, 13232–13237 (2006)PubMedCrossRefGoogle Scholar
  50. Z. Li, S. Matsuoka, L.V. Hryshko, D.A. Nicoll, M.M. Bersohn, E.P. Burke, R.P. Lifton, K.D. Philipson, Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+ exchanger. J. Biol. Chem. 269, 17434–17439 (1994)PubMedGoogle Scholar
  51. D. Liu, D. Yang, H. He, X. Chen, T. Cao, X. Feng, L. Ma, Z. Luo, L. Wang, Z. Yan, Z. Zhu, M. Tepel, Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension 53, 70–76 (2009)PubMedCrossRefGoogle Scholar
  52. M. Luo, M.C. Hess, G.D. Fink, L.K. Olson, J. Rogers, D.L. Kreulen, X. Dai, J.J. Galligan, Differential alterations in sympathetic neurotransmission in mesenteric arteries and veins in DOCA-salt hypertensive rats. Auton. Neurosci. 104, 47–57 (2003)PubMedCrossRefGoogle Scholar
  53. R.M. Lynch, C.S. Weber, K.D. Nullmeyer, E.D. Moore, R.J. Paul, Clearance of store-released Ca2+ by the Na+-Ca2+ exchanger is diminished in aortic smooth muscle from Na+-K+-ATPase alpha 2-isoform gene-ablated mice. Am. J. Physiol. Heart Circ. Physiol. 294, H1407–H1416 (2008)PubMedCrossRefGoogle Scholar
  54. J.J. Maguire, A.P. Davenport, Regulation of vascular reactivity by established and emerging GPCRs. Trends Pharmacol. Sci. 26, 448–454 (2005)PubMedGoogle Scholar
  55. L. Martinez-Lemus, M. Hill, G. Meininger, The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology (Bethesda) 24, 45–57 (2009)CrossRefGoogle Scholar
  56. Y. Maruyama, Y. Nakanishi, E.J. Walsh, D.P. Wilson, D.G. Welsh, W.C. Cole, Heteromultimeric TRPC6-TRPC7 channels contribute to arginine vasopressin-induced cation current of A7r5 vascular smooth muscle cells. Circ. Res. 98, 1520–1527 (2006)PubMedCrossRefGoogle Scholar
  57. V.V. Matchkov, O.S. Tarasova, M.J. Mulvany, H. Nilsson, Myogenic response of rat femoral small arteries in relation to wall structure and [Ca2+]i. Am. J. Physiol. Heart Circ. Physiol. 283, H118–H125 (2002)PubMedGoogle Scholar
  58. T. Matsuda, N. Arakawa, K. Takuma, Y. Kishida, Y. Kawasaki, M. Sakaue, K. Takahashi, T. Takahashi, T. Suzuki, T. Ota, A. Hamano-Takahashi, M. Onishi, Y. Tanaka, K. Kameo, A. Baba, SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J. Pharmacol. Exp. Ther. 298, 249–256 (2001)PubMedGoogle Scholar
  59. E.D. Moore, E.F. Etter, K.D. Philipson, W.A. Carrington, K.E. Fogarty, L.M. Lifshitz, F.S. Fay, Coupling of the Na+/Ca2+ exchanger, Na+/K+ pump and sarcoplasmic reticulum in smooth muscle. Nature 365, 657–660 (1993)PubMedCrossRefGoogle Scholar
  60. M. Morad, L. Cleemann, D.R. Menick, NCX1 phosphorylation dilemma: a little closer to resolution. Focus on “Full-length cardiac Na+/Ca2+ exchanger 1 protein is not phosphorylated by protein kinase A”. Am. J. Physiol. Cell Physiol. 300, C970–C973 (2011)PubMedCrossRefGoogle Scholar
  61. R.E. Mufti, S.E. Brett, C.H. Tran, R. Abd El-Rahman, Y. Anfinogenova, A. El-Yazbi, W.C. Cole, P.P. Jones, S.R. Chen, D.G. Welsh, Intravascular pressure augments cerebral arterial constriction by inducing voltage-insensitive Ca2+ waves. J. Physiol. 588, 3983–4005 (2010)PubMedCrossRefGoogle Scholar
  62. M.J. Mulvany, H. Nilsson, J.A. Flatman, Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation. J. Physiol. 332, 363–373 (1982)PubMedGoogle Scholar
  63. Y. Nakasaki, T. Iwamoto, H. Hanada, T. Imagawa, M. Shigekawa, Cloning of the rat aortic smooth muscle Na+/Ca2+ exchanger and tissue-specific expression of isoforms. J. Biochem. (Tokyo) 114, 528–534 (1993)Google Scholar
  64. M.T. Nelson, H. Cheng, M. Rubart, L.F. Santana, A.D. Bonev, H.J. Knot, W.J. Lederer, Relaxation of arterial smooth muscle by calcium sparks. Science 270, 633–637 (1995)PubMedCrossRefGoogle Scholar
  65. L.D. Nelson, M.T. Unlap, J.L. Lewis, P.D. Bell, Renal arteriolar Na+/Ca2+ exchange in salt-sensitive hypertension. Am. J. Physiol. Renal Physiol. 276, F567–F573 (1999)Google Scholar
  66. D.A. Nicoll, S. Longoni, K.D. Philipson, Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250, 562–565 (1990)PubMedCrossRefGoogle Scholar
  67. D.A. Nicoll, B.D. Quednau, Z. Qui, Y.R. Xia, A.J. Lusis, K.D. Philipson, Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J. Biol. Chem. 271, 24914–24921 (1996)PubMedCrossRefGoogle Scholar
  68. D. Poburko, C.H. Liao, V.S. Lemos, E. Lin, Y. Maruyama, W.C. Cole, C. van Breemen, Transient receptor potential channel 6-mediated, localized cytosolic [Na+] transients drive Na+/Ca2+ exchanger-mediated Ca2+ entry in purinergically stimulated aorta smooth muscle cells. Circ. Res. 101, 1030–1038 (2007)PubMedCrossRefGoogle Scholar
  69. C. Pott, X. Ren, D.X. Tran, M.J. Yang, S. Henderson, M.C. Jordan, K.P. Roos, A. Garfinkel, K.D. Philipson, J.I. Goldhaber, Mechanism of shortened action potential duration in Na+-Ca2+ exchanger knockout mice. Am. J. Physiol. Cell Physiol. 292, C968–C973 (2007a)PubMedCrossRefGoogle Scholar
  70. C. Pott, M. Yip, J.I. Goldhaber, K.D. Philipson, Regulation of cardiac L-type Ca2+ current in Na+-Ca2+ exchanger knockout mice: functional coupling of the Ca2+ channel and the Na+-Ca2+ exchanger. Biophys. J. 92, 1431–1437 (2007b)PubMedCrossRefGoogle Scholar
  71. T.J. Pritchard, P.S. Bowman, A. Jefferson, M. Tosun, R.M. Lynch, R.J. Paul, Na+-K+-ATPase and Ca2+ clearance proteins in smooth muscle: a functional unit. Am. J. Physiol. Heart Circ. Physiol. 299, H548–H556 (2010)PubMedCrossRefGoogle Scholar
  72. M.V. Pulina, A. Zulian, R. Berra-Romani, O. Beskina, A. Mazzocco-Spezzia, S.G. Baryshnikov, I. Papparella, J.M. Hamlyn, M.P. Blaustein, V.A. Golovina, Upregulation of Na+ and Ca2+ transporters in arterial smooth muscle from ouabain-induced hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 298, H263–H274 (2010)PubMedCrossRefGoogle Scholar
  73. B.D. Quednau, D.A. Nicoll, K.D. Philipson, Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am. J. Physiol. Cell Physiol. 272, C1250–C1261 (1997)Google Scholar
  74. H. Raina, S.R. Ella, M.A. Hill, Decreased activity of the smooth muscle Na+/Ca2+ exchanger impairs arteriolar myogenic reactivity. J. Physiol. 586, 1669–1681 (2008)PubMedCrossRefGoogle Scholar
  75. A. Rebolledo, F. Speroni, J. Raingo, S.V. Salemme, F. Tanzi, V. Munin, M.C. Añón, V. Milesi, The Na+/Ca2+ exchanger is active and working in the reverse mode in human umbilical artery smooth muscle cells. Biochem. Biophys. Res. Commun. 339, 840–845 (2006)PubMedCrossRefGoogle Scholar
  76. J.P. Reeves, M. Condrescu, J. Urbanczyk, O. Chernysh, New modes of exchanger regulation: physiological implications. Ann. N. Y. Acad. Sci. 1099, 64–77 (2007)PubMedCrossRefGoogle Scholar
  77. C. Ren, J. Zhang, K.D. Philipson, M.I. Kotlikoff, M.P. Blaustein, D.R. Matteson, Activation of L-type Ca2+ channels by protein kinase C is reduced in smooth muscle-specific Na+/Ca2+ exchanger knockout mice. Am. J. Physiol. Heart Circ. Physiol. 298, H1484–H1491 (2010)PubMedCrossRefGoogle Scholar
  78. M.K. Slodzinski, M.P. Blaustein, Physiological effects of Na+/Ca2+ exchanger knockdown by antisense oligodeoxynucleotides in arterial myocytes. Am. J. Physiol. Cell Physiol. 275, C251–C259 (1998)Google Scholar
  79. M.K. Slodzinski, M. Juhaszova, M.P. Blaustein, Antisense inhibition of Na+/Ca2+ exchange in primary cultured arterial myocytes. Am. J. Physiol. 269, C1340–C1345 (1995)PubMedGoogle Scholar
  80. A.P. Somlyo, A.V. Somlyo, Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325–1358 (2003)PubMedGoogle Scholar
  81. H.T. Syyong, D. Poburko, N. Fameli, C. van Breemen, ATP promotes NCX-reversal in aortic smooth muscle cells by DAG-activated Na+ entry. Biochem. Biophys. Res. Commun. 357, 1177–1182 (2007)PubMedCrossRefGoogle Scholar
  82. S. Taniguchi, K. Furukawa, S. Sasamura, Y. Ohizumi, K. Seya, S. Motomura, Gene expression and functional activity of sodium/calcium exchanger enhanced in vascular smooth muscle cells of spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 43, 629–637 (2004)PubMedCrossRefGoogle Scholar
  83. T.L. Török, Electrogenic Na+/Ca2+-exchange of nerve and muscle cells. Prog. Neurobiol. 82, 287–347 (2007)PubMedCrossRefGoogle Scholar
  84. S.Y. Tsang, X. Yao, C.M. Wong, C.L. Au, Z.Y. Chen, Y. Huang, Contribution of Na+-Ca2+ exchanger to pinacidil-induced relaxation in the rat mesenteric artery. Br. J. Pharmacol. 138, 453–460 (2003)PubMedCrossRefGoogle Scholar
  85. K. Tsuda, S. Tsuda, I. Nishio, Y. Masuyama, Inhibition of norepinephrine release by presynaptic alpha 2-adrenoceptors in mesenteric vasculature preparations from chronic DOCA-salt hypertensive rats. Jpn. Heart J. 30, 231–239 (1989)PubMedCrossRefGoogle Scholar
  86. C. van Breemen, Q. Chen, I. Laher, Superficial buffer barrier function of smooth muscle sarcoplasmic reticulum. Trends Pharmacol. Sci. 16, 98–105 (1995)PubMedCrossRefGoogle Scholar
  87. D.G. Welsh, A.D. Morielli, M.T. Nelson, J.E. Brayden, Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ. Res. 90, 248–250 (2002)PubMedCrossRefGoogle Scholar
  88. E.B. Westcott, W.F. Jackson, Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles. Am. J. Physiol. Heart Circ. Physiol. 300, H1616–H1630 (2011)PubMedCrossRefGoogle Scholar
  89. A. Wirth, Z. Benyó, M. Lukasova, B. Leutgeb, N. Wettschureck, S. Gorbey, P. Orsy, B. Horváth, C. Maser-Gluth, E. Greiner, B. Lemmer, G. Schütz, J.S. Gutkind, S. Offermanns, G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat. Med. 14, 64–68 (2008)PubMedCrossRefGoogle Scholar
  90. J. Yamanaka, J. Nishimura, K. Hirano, H. Kanaide, An important role for the Na+-Ca2+ exchanger in the decrease in cytosolic Ca2+ concentration induced by isoprenaline in the porcine coronary artery. J. Physiol. 549, 553–562 (2003)PubMedCrossRefGoogle Scholar
  91. Y. Yu, I. Fantozzi, C.V. Remillard, J.W. Landsberg, N. Kunichika, O. Platoshyn, D.D. Tigno, P.A. Thistlethwaite, L.J. Rubin, J.X. Yuan, Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc. Natl. Acad. Sci. U. S. A. 101, 13861–13866 (2004)PubMedCrossRefGoogle Scholar
  92. J. Zacharia, J. Zhang, W.G. Wier, Ca2+ signaling in mouse mesenteric small arteries: myogenic tone and adrenergic vasoconstriction. Am. J. Physiol. Heart Circ. Physiol. 292, H1523–H1532 (2007)PubMedCrossRefGoogle Scholar
  93. W.J. Zang, C.W. Balke, W.G. Wier, Graded alpha1-adrenoceptor activation of arteries involves recruitment of smooth muscle cells to produce ‘all or none’ Ca2+ signals. Cell Calcium 29, 327–334 (2001)PubMedCrossRefGoogle Scholar
  94. S. Zhang, J.X. Yuan, K.E. Barrett, H. Dong, Role of Na+/Ca2+ exchange in regulating cytosolic Ca2+ in cultured human pulmonary artery smooth muscle cells. Am. J. Physiol. Cell Physiol. 288, C245–C252 (2005a)PubMedCrossRefGoogle Scholar
  95. J. Zhang, M.Y. Lee, M. Cavalli, L. Chen, R. Berra-Romani, C.W. Balke, G. Bianchi, P. Ferrari, J.M. Hamlyn, T. Iwamoto, J.B. Lingrel, D.R. Matteson, W.G. Wier, M.P. Blaustein, Sodium pump alpha2 subunits control myogenic tone and blood pressure in mice. J. Physiol. 569, 243–256 (2005b)PubMedCrossRefGoogle Scholar
  96. S. Zhang, H. Dong, L.J. Rubin, J.X. Yuan, Upregulation of Na+/Ca2+ exchanger contributes to the enhanced Ca2+ entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Am. J. Physiol. Cell Physiol. 292, C2297–C2305 (2007)PubMedCrossRefGoogle Scholar
  97. J. Zhang, L. Chen, H. Raina, M.P. Blaustein, W.G. Wier, In vivo assessment of artery smooth muscle [Ca2+]i and MLCK activation in FRET-based biosensor mice. Am. J. Physiol. Heart Circ. Physiol. 299, H946–H956 (2010a)PubMedCrossRefGoogle Scholar
  98. J. Zhang, C. Ren, L. Chen, M.F. Navedo, L.K. Antos, S.P. Kinsey, T. Iwamoto, K.D. Philipson, M.I. Kotlikoff, L.F. Santana, W.G. Wier, D.R. Matteson, M.P. Blaustein, Knockout of Na+/Ca2+ exchanger in smooth muscle attenuates vasoconstriction and L-type Ca2+ channel current and lowers blood pressure. Am. J. Physiol. Heart Circ. Physiol. 298, H1472–H1483 (2010b)PubMedCrossRefGoogle Scholar
  99. D. Zhao, J. Zhang, M.P. Blaustein, L.G. Navar, Attenuated renal vascular responses to acute angiotensin II infusion in smooth muscle-specific Na+/Ca2+ exchanger knockout mice. Am. J. Physiol. Renal Physiol. 301, F574–F579 (2011)PubMedCrossRefGoogle Scholar
  100. Y.M. Zheng, Y.X. Wang, Sodium-calcium exchanger in pulmonary artery smooth muscle cells. Ann. N. Y. Acad. Sci. 1099, 427–435 (2007)PubMedCrossRefGoogle Scholar
  101. A. Zulian, S.G. Baryshnikov, C.I. Linde, J.M. Hamlyn, P. Ferrari, V.A. Golovina, Upregulation of Na+/Ca2+ exchanger and TRPC6 contributes to abnormal Ca2+ homeostasis in arterial smooth muscle cells from Milan hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 299, H624–H633 (2010)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations