Therapeutic Strategies to Treat Alcohol-Related Disorders Targeting Central Immune Signaling

  • Yue Wu
  • Mark R. Hutchinson


With its consumption believed to have begun more than 10,000 years ago, alcohol continues to feature prominently in many societies and cultures worldwide. Unfortunately among the two billion annual consumers, alcohol abuse poses a significant issue, with over 76 million people diagnosed with an alcohol abuse disorder [1]. Related to more than 60 types of disease and injury, alcohol consumption is the third biggest risk factor for disease burden in developed countries, such as the United States, Canada, Germany, France, the United Kingdom, Australia, and Japan, and is the largest risk factor in developing countries, such as China, the Philippines, Vietnam, Indonesia, Thailand, Brazil, and Mexico [1]. As alcohol dependence and abuse remain continuing and important health problems, intervention strategies to overcome this drug addiction are urgently required to reduce the burden of their related diseases in society.


Alcohol Dependence Microglial Activation TLR4 Signaling Alcohol Exposure Chronic Alcohol Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Adenosine triphosphate




Blood–brain barrier


Chemokine (C–C motif) ligand receptor 2


Chemokine (C–C) motif ligand 2


Central nervous system




Cathepsin F


Cathepsin S


Chemokine (C–X–C motif) ligand 12


Danger-associated molecular pattern


Extracellular regulated kinase


Gamma-aminobutyric acid


Glial cell line-derived neurotrophic factor


Glial fibrillary acidic protein


Human immunodeficiency virus






Interleukin-1 receptor antagonist


Inducible nitric oxide synthase


Serine/threonine kinase interleukin-1 receptor-associated kinase 4


IFN regulatory factor 3


NFκB inhibitor α


c-Jun N-terminal kinase




Myelin and lymphocyte protein


Mitogen-activated protein kinase


Monocyte chemoattractant protein-1


Myeloid differentiation factor 2


Major histocompatibility complex


μ-Opioid receptor


Myeloid differentiation primary response gene 88


Nucleus accumbens


Nuclear factor κ-light-chain-enhancer of activated B cells


Neuronal N-methyl-d-aspartate


Nitric oxide


Pathogen-associated molecular pattern


Phosphoinositide 3-kinase


Substantia nigra


Toll-like receptor


Tumor necrosis factor-α


TRIF-related adaptor molecule


Toll/IL-1R domain containing adaptor inducing IFN-β


Ventral tegmental area


  1. 1.
    WHO (2004) WHO global status report on alcohol 2004. WHO, GenevaGoogle Scholar
  2. 2.
    Hansson E et al (1987) Astroglial primary cultures: a model to study ethanol effects on the cell membrane lipid composition. Alcohol Alcohol Suppl 1:679–683PubMedGoogle Scholar
  3. 3.
    Ronnback L, Hansson E, Alling C (1988) Primary astroglial cultures in alcohol and drug research. Alcohol Alcohol 23(6):465–475PubMedGoogle Scholar
  4. 4.
    Alling C et al (1986) Lipids and fatty acids in membranes from astroglial cells cultured in ethanol-containing media. Drug Alcohol Depend 18(2):115–126PubMedCrossRefGoogle Scholar
  5. 5.
    Allen NJ, Barres BA (2009) Neuroscience: glia—more than just brain glue. Nature 457(7230):675–677PubMedCrossRefGoogle Scholar
  6. 6.
    Miller G (2005) Neuroscience. The dark side of glia. Science 308(5723):778–781PubMedCrossRefGoogle Scholar
  7. 7.
    Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1(1):14PubMedCrossRefGoogle Scholar
  8. 8.
    Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318PubMedCrossRefGoogle Scholar
  9. 9.
    Araque A et al (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22(5):208–215PubMedCrossRefGoogle Scholar
  10. 10.
    Smith K (2010) Neuroscience: settling the great glia debate. Nature 468(7321):160–162PubMedCrossRefGoogle Scholar
  11. 11.
    Perea G, Araque A (2002) Communication between astrocytes and neurons: a complex language. J Physiol Paris 96(3–4):199–207PubMedCrossRefGoogle Scholar
  12. 12.
    Fields RD, Stevens-Graham B (2002) New insights into neuron-glia communication. Science 298(5593):556–562PubMedCrossRefGoogle Scholar
  13. 13.
    Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216PubMedCrossRefGoogle Scholar
  14. 14.
    Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81(1):1–5PubMedCrossRefGoogle Scholar
  15. 15.
    Watkins LR, Maier SF (2005) Immune regulation of central nervous system functions: from sickness responses to pathological pain. J Intern Med 257(2):139–155PubMedCrossRefGoogle Scholar
  16. 16.
    Ortiz J et al (1995) Biochemical actions of chronic ethanol exposure in the mesolimbic dopamine system. Synapse 21(4):289–298PubMedCrossRefGoogle Scholar
  17. 17.
    Udomuksorn W et al (2011) Effects of alcohol administration during adulthood on parvalbumin and glial fibrillary acidic protein immunoreactivity in the rat cerebral cortex. Acta Histochem 113(3):283–289PubMedCrossRefGoogle Scholar
  18. 18.
    Alfonso-Loeches S et al (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30(24):8285–8295PubMedCrossRefGoogle Scholar
  19. 19.
    McClain JA et al (2011) Adolescent binge alcohol exposure induces long-lasting partial activation of microglia. Brain Behav Immun 25(Suppl 1):S120–S128PubMedCrossRefGoogle Scholar
  20. 20.
    Wu Y et al (2011) Attenuation of microglial and IL-1 signaling protects mice from acute alcohol-induced sedation and/or motor impairment. Brain Behav Immun 25(Suppl 1): S155–S164PubMedCrossRefGoogle Scholar
  21. 21.
    Agrawal RG et al (2011) Minocycline reduces ethanol drinking. Brain Behav Immun 25(Suppl 1):S165–S169PubMedCrossRefGoogle Scholar
  22. 22.
    He J, Crews FT (2008) Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 210(2):349–358PubMedCrossRefGoogle Scholar
  23. 23.
    Blanco AM et al (2008) Ethanol mimics ligand-mediated activation and endocytosis of IL-1RI/TLR4 receptors via lipid rafts caveolae in astroglial cells. J Neurochem 106(2):625–639PubMedCrossRefGoogle Scholar
  24. 24.
    Lee M, Schwab C, McGeer PL (2011) Astrocytes are GABAergic cells that modulate microglial activity. Glia 59(1):152–165PubMedCrossRefGoogle Scholar
  25. 25.
    Zou J, Crews F (2010) Induction of innate immune gene expression cascades in brain slice cultures by ethanol: key role of NF-kappaB and proinflammatory cytokines. Alcohol Clin Exp Res 34(5):777–789PubMedCrossRefGoogle Scholar
  26. 26.
    Jack CS et al (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175(7):4320–4330PubMedGoogle Scholar
  27. 27.
    Lehnardt S et al (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22(7):2478–2486PubMedGoogle Scholar
  28. 28.
    Ren K, Dubner R (2008) Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr Opin Anaesthesiol 21(5):570–579PubMedCrossRefGoogle Scholar
  29. 29.
    Ikonomidou C et al (2000) Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287(5455):1056–1060PubMedCrossRefGoogle Scholar
  30. 30.
    Vengeliene V et al (2008) Neuropharmacology of alcohol addiction. Br J Pharmacol 154(2):299–315PubMedCrossRefGoogle Scholar
  31. 31.
    Liu J et al (2011) Binge alcohol drinking is associated with GABAA alpha2-regulated Toll-like receptor 4 (TLR4) expression in the central amygdala. Proc Natl Acad Sci U S A 108(11):4465–4470PubMedCrossRefGoogle Scholar
  32. 32.
    Wu PH et al (2010) Correlated changes in NMDA receptor phosphorylation, functional activity, and sedation by chronic ethanol consumption. J Neurochem 115(5):1112–1122PubMedCrossRefGoogle Scholar
  33. 33.
    Singh AK et al (2007) Effects of chronic ethanol drinking on the blood brain barrier and ensuing neuronal toxicity in alcohol-preferring rats subjected to intraperitoneal LPS injection. Alcohol Alcohol 42(5):385–399PubMedGoogle Scholar
  34. 34.
    Palygin O, Lalo U, Pankratov Y (2011) Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br J Pharmacol 163(8):1755–1766PubMedCrossRefGoogle Scholar
  35. 35.
    Lee MC et al (2010) Characterisation of the expression of NMDA receptors in human astrocytes. PLoS One 5(11):e14123PubMedCrossRefGoogle Scholar
  36. 36.
    Santofimia-Castano P, Salido GM, Gonzalez A (2011) Ethanol reduces kainate-evoked glutamate secretion in rat hippocampal astrocytes. Brain Res 1402:1–8PubMedCrossRefGoogle Scholar
  37. 37.
    Bardoni R et al (2010) Glutamate-mediated astrocyte-to-neuron signalling in the rat dorsal horn. J Physiol 588(Pt 5):831–846PubMedCrossRefGoogle Scholar
  38. 38.
    Boyadjieva NI, Sarkar DK (2010) Role of microglia in ethanol’s apoptotic action on hypothalamic neuronal cells in primary cultures. Alcohol Clin Exp Res 34(11):1835–1842PubMedCrossRefGoogle Scholar
  39. 39.
    Fernandez-Lizarbe S, Pascual M, Guerri C (2009) Critical role of TLR4 response in the activation of microglia induced by ethanol. J Immunol 183(7):4733–4744PubMedCrossRefGoogle Scholar
  40. 40.
    Blanco AM et al (2005) Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol 175(10):6893–6899PubMedGoogle Scholar
  41. 41.
    Prow NA, Irani DN (2008) The inflammatory cytokine, interleukin-1 beta, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. J Neurochem 105(4):1276–1286PubMedCrossRefGoogle Scholar
  42. 42.
    Glezer I et al (2003) Modulation of the innate immune response by NMDA receptors has neuropathological consequences. J Neurosci 23(35):11094–11103PubMedGoogle Scholar
  43. 43.
    Heinisch S, Kirby LG (2010) SDF-1alpha/CXCL12 enhances GABA and glutamate synaptic activity at serotonin neurons in the rat dorsal raphe nucleus. Neuropharmacology 58(2):501–514PubMedCrossRefGoogle Scholar
  44. 44.
    Benjamins JA et al (2011) Cytokines reduce toxic effects of ethanol on oligodendroglia. Neurochem Res 36(9):1677–1686PubMedCrossRefGoogle Scholar
  45. 45.
    Crews F et al (2006) BHT blocks NF-kappaB activation and ethanol-induced brain damage. Alcohol Clin Exp Res 30(11):1938–1949PubMedCrossRefGoogle Scholar
  46. 46.
    Liu J et al (2006) Patterns of gene expression in the frontal cortex discriminate alcoholic from nonalcoholic individuals. Neuropsychopharmacology 31(7):1574–1582PubMedCrossRefGoogle Scholar
  47. 47.
    Pascual M et al (2011) Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 25(Suppl 1):S80–S91PubMedCrossRefGoogle Scholar
  48. 48.
    Wu Y et al (2011) Inhibiting the TLR4-MyD88 signalling cascade by genetic or pharmacologic strategies reduces acute alcohol dose-induced sedation and motor impairment in mice. Brit J Pharmacology 165(5):1319–1329CrossRefGoogle Scholar
  49. 49.
    Hutchinson MR et al (2011) Neuroimmunopharmacology of opioids & alcohol: behavioral, cellular signaling and binding evidence of a role for Toll like receptors. In: Society for Neuroscience. Neuroscience Meeting Planner, Washington, DCGoogle Scholar
  50. 50.
    Blednov YA et al (2011) Neuroimmune regulation of alcohol consumption: behavioral ­validation of genes obtained from genomic studies. Addict Biol 17(1):108–120PubMedCrossRefGoogle Scholar
  51. 51.
    Carnicella S et al (2008) GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse. Proc Natl Acad Sci U S A 105(23):8114–8119PubMedCrossRefGoogle Scholar
  52. 52.
    Marcos M et al (2008) Interleukin-10 gene polymorphism is associated with alcoholism but not with alcoholic liver disease. Alcohol Alcohol 43(5):523–528PubMedGoogle Scholar
  53. 53.
    Pastor IJ et al (2005) Interleukin-1 gene cluster polymorphisms and alcoholism in Spanish men. Alcohol Alcohol 40(3):181–186PubMedGoogle Scholar
  54. 54.
    Pastor IJ et al (2000) Polymorphism in the interleukin-1 receptor antagonist gene is associated with alcoholism in Spanish men. Alcohol Clin Exp Res 24(10):1479–1482PubMedCrossRefGoogle Scholar
  55. 55.
    Liu L et al (2009) Association of IL-1B genetic polymorphisms with an increased risk of opioid and alcohol dependence. Pharmacogenet Genomics 19:869–876PubMedCrossRefGoogle Scholar
  56. 56.
    Blednov YA et al (2005) Perturbation of chemokine networks by gene deletion alters the reinforcing actions of ethanol. Behav Brain Res 165(1):110–125PubMedCrossRefGoogle Scholar
  57. 57.
    Edenberg HJ et al (2008) Association of NFKB1, which encodes a subunit of the transcription factor NF-kappaB, with alcohol dependence. Hum Mol Genet 17(7):963–970PubMedCrossRefGoogle Scholar
  58. 58.
    Drugan RC et al (2007) Environmental and immune stressors enhance alcohol-induced motor ataxia in rat. Pharmacol Biochem Behav 86(1):125–131PubMedCrossRefGoogle Scholar
  59. 59.
    Blednov YA et al (2011) Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice. Brain Behav Immun 25(Suppl 1):S92–S105PubMedCrossRefGoogle Scholar
  60. 60.
    Blanco AM et al (2004) Ethanol-induced iNOS and COX-2 expression in cultured astrocytes via NF-kappa B. Neuroreport 15(4):681–685PubMedCrossRefGoogle Scholar
  61. 61.
    Valles SL et al (2004) Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol 14(4):365–371PubMedCrossRefGoogle Scholar
  62. 62.
    Park BS et al (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458(7242):1191–1195PubMedCrossRefGoogle Scholar
  63. 63.
    Kim HM et al (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130(5):906–917PubMedCrossRefGoogle Scholar
  64. 64.
    Hua F et al (2007) Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. J Neuroimmunol 190(1–2):101–111PubMedCrossRefGoogle Scholar
  65. 65.
    Hennessy EJ, Parker AE, O’Neill LA (2010) Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov 9(4):293–307PubMedCrossRefGoogle Scholar
  66. 66.
    Akira S, Takeda K (2004) Functions of toll-like receptors: lessons from KO mice. C R Biol 327(6):581–589PubMedCrossRefGoogle Scholar
  67. 67.
    Jin MS et al (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130(6):1071–1082PubMedCrossRefGoogle Scholar
  68. 68.
    Kang JY et al (2009) Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31(6):873–884PubMedCrossRefGoogle Scholar
  69. 69.
    Sheedy FJ, O’Neill LA (2007) The Troll in Toll: Mal and Tram as bridges for TLR2 and TLR4 signaling. J Leukoc Biol 82(2):196–203PubMedCrossRefGoogle Scholar
  70. 70.
    Rakoff-Nahoum S, Medzhitov R (2009) Toll-like receptors and cancer. Nat Rev Cancer 9(1):57–63PubMedCrossRefGoogle Scholar
  71. 71.
    Suk K (2007) Microglial signal transduction as a target of alcohol action in the brain. Curr Neurovasc Res 4(2):131–142PubMedCrossRefGoogle Scholar
  72. 72.
    Bjork K et al (2010) Ethanol-induced activation of AKT and DARPP-32 in the mouse striatum mediated by opioid receptors. Addict Biol 15(3):299–303PubMedCrossRefGoogle Scholar
  73. 73.
    Hutchinson MR et al (2008) Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). Eur J Neurosci 28(1):20–29PubMedCrossRefGoogle Scholar
  74. 74.
    Neasta J et al (2011) AKT signaling pathway in the nucleus accumbens mediates excessive alcohol drinking behaviors. Biol Psychiatry 70(6):575–582PubMedCrossRefGoogle Scholar
  75. 75.
    Liu L et al (2010) Mesenchymal stem cells inhibition of chronic ethanol-induced oxidative damage via upregulation of phosphatidylinositol-3-kinase/Akt and modulation of extracellular signal-regulated kinase 1/2 activation in PC12 cells and neurons. Neuroscience 167(4):1115–1124PubMedCrossRefGoogle Scholar
  76. 76.
    Arlinde C et al (2004) A cluster of differentially expressed signal transduction genes identified by microarray analysis in a rat genetic model of alcoholism. Pharmacogenomics J 4(3):208–218PubMedCrossRefGoogle Scholar
  77. 77.
    Garbutt JC et al (1999) Pharmacological treatment of alcohol dependence: a review of the evidence. JAMA 281(14):1318–1325PubMedCrossRefGoogle Scholar
  78. 78.
    Lejoyeux M, Ades J (1993) Evaluation of lithium treatment in alcoholism. Alcohol Alcohol 28(3):273–279PubMedGoogle Scholar
  79. 79.
    Srisurapanont M, Jarusuraisin N (2005) Opioid antagonists for alcohol dependence. Cochrane Database Syst Rev 1:CD001867PubMedGoogle Scholar
  80. 80.
    Hutchinson MR et al (2008) Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain Behav Immun 22:1248–1256PubMedCrossRefGoogle Scholar
  81. 81.
    Zhang L et al (2006) Protective effects of minocycline on behavioral changes and neurotoxicity in mice after administration of methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 30(8):1381–1393PubMedCrossRefGoogle Scholar
  82. 82.
    Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598PubMedCrossRefGoogle Scholar
  83. 83.
    Hutchinson MR et al (2011) Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 63(3):772–810PubMedCrossRefGoogle Scholar
  84. 84.
    Chen H, Manev H (2011) Effects of minocycline on cocaine sensitization and phosphorylation of GluR1 receptors in 5-lipoxygenase deficient mice. Neuropharmacology 60(7–8):1058–1063PubMedCrossRefGoogle Scholar
  85. 85.
    Chen H, Uz T, Manev H (2009) Minocycline affects cocaine sensitization in mice. Neurosci Lett 452(3):258–261PubMedCrossRefGoogle Scholar
  86. 86.
    Mizoguchi H et al (2008) Improvement by minocycline of methamphetamine-induced impairment of recognition memory in mice. Psychopharmacology (Berl) 196(2):233–241CrossRefGoogle Scholar
  87. 87.
    Bland ST et al (2009) The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain Behav Immun 23(4):492–497PubMedCrossRefGoogle Scholar
  88. 88.
    Ledeboer A et al (2007) Ibudilast (AV-411). A new class therapeutic candidate for neuropathic pain and opioid withdrawal syndromes. Expert Opin Investig Drugs 16(7): 935–950PubMedCrossRefGoogle Scholar
  89. 89.
    Hutchinson MR et al (2009) Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun 23(2):240–250PubMedCrossRefGoogle Scholar
  90. 90.
    Beardsley PM et al (2011) The glial cell modulator and phosphodiesterase inhibitor, AV411 (ibudilast), attenuates prime- and stress-induced methamphetamine relapse. Eur J Pharmacol 637(1–3):102–108Google Scholar
  91. 91.
    Narita M et al (2006) Direct evidence of astrocytic modulation in the development of rewarding effects induced by drugs of abuse. Neuropsychopharmacology 31(11):2476–2488PubMedCrossRefGoogle Scholar
  92. 92.
    Raghavendra V, Tanga FY, DeLeo JA (2004) Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats. Neuropsychopharmacology 29(2):327–334PubMedCrossRefGoogle Scholar
  93. 93.
    Watkins LR et al (2009) The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 30(11):581–591PubMedCrossRefGoogle Scholar
  94. 94.
    Kircik LH (2010) Doxycycline and minocycline for the management of acne: a review of efficacy and safety with emphasis on clinical implications. J Drugs Dermatol 9(11):1407–1411PubMedGoogle Scholar
  95. 95.
    Colaizzi JL, Klink PR (1969) pH-Partition behavior of tetracyclines. J Pharm Sci 58(10):1184–1189PubMedCrossRefGoogle Scholar
  96. 96.
    Carney S et al (1974) Minocycline excretion and distribution in relation to renal function in man. Clin Exp Pharmacol Physiol 1(4):299–308PubMedCrossRefGoogle Scholar
  97. 97.
    Saivin S, Houin G (1988) Clinical pharmacokinetics of doxycycline and minocycline. Clin Pharmacokinet 15(6):355–366PubMedCrossRefGoogle Scholar
  98. 98.
    Yong VW et al (2004) The promise of minocycline in neurology. Lancet Neurol 3(12):744–751PubMedCrossRefGoogle Scholar
  99. 99.
    Gibson LC et al (2006) The inhibitory profile of Ibudilast against the human phosphodiesterase enzyme family. Eur J Pharmacol 538(1–3):39–42PubMedCrossRefGoogle Scholar
  100. 100.
    Rolan P, Hutchinson M, Johnson K (2009) Ibudilast: a review of its pharmacology, efficacy and safety in respiratory and neurological disease. Expert Opin Pharmacother 10(17):2897–2904PubMedCrossRefGoogle Scholar
  101. 101.
    Kishi Y et al (2001) Ibudilast: a non-selective PDE inhibitor with multiple actions on blood cells and the vascular wall. Cardiovasc Drug Rev 19(3):215–225PubMedCrossRefGoogle Scholar
  102. 102.
    Ledeboer A et al (2006) The glial modulatory drug AV411 attenuates mechanical allodynia in rat models of neuropathic pain. Neuron Glia Biol 2(4):279–291PubMedCrossRefGoogle Scholar
  103. 103.
    Schubert P et al (1997) Support of homeostatic glial cell signaling: a novel therapeutic approach by propentofylline. Ann N Y Acad Sci 826:337–347PubMedCrossRefGoogle Scholar
  104. 104.
    Sweitzer SM, Schubert P, DeLeo JA (2001) Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther 297(3):1210–1217PubMedGoogle Scholar
  105. 105.
    Tawfik VL et al (2007) Reprint of “efficacy of propentofylline, a glial modulating agent, on existing mechanical allodynia following peripheral nerve injury” [Brain Behav. Immun. 21 (2007) 238–246]. Brain Behav Immun 21(5):677–685PubMedCrossRefGoogle Scholar
  106. 106.
    Marcusson J et al (1997) A 12-month, randomized, placebo-controlled trial of propentofylline (HWA 285) in patients with dementia according to DSM III-R. The European Propentofylline Study Group. Dement Geriatr Cogn Disord 8(5):320–328PubMedCrossRefGoogle Scholar
  107. 107.
    Salimi S et al (2008) A placebo controlled study of the propentofylline added to risperidone in chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 32(3):726–732PubMedCrossRefGoogle Scholar
  108. 108.
    Hutchinson MR et al (2010) Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience 167(3):880–893PubMedCrossRefGoogle Scholar
  109. 109.
    Rossignol DP et al (2008) Continuous pharmacodynamic activity of eritoran tetrasodium, a TLR4 antagonist, during intermittent intravenous infusion into normal volunteers. Innate Immun 14(6):383–394PubMedCrossRefGoogle Scholar
  110. 110.
    Yamada M et al (2005) Discovery of novel and potent small-molecule inhibitors of NO and cytokine production as antisepsis agents: synthesis and biological activity of alkyl 6-(N-substituted sulfamoyl)cyclohex-1-ene-1-carboxylate. J Med Chem 48(23):7457–7467PubMedCrossRefGoogle Scholar
  111. 111.
    Hutchinson MR et al (2010) Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 24(1):83–95PubMedCrossRefGoogle Scholar
  112. 112.
    Chatterjie N et al (1996) Prevention of cocaine-induced hyperactivity by a naloxone isomer with no opiate antagonist activity. Neurochem Res 21(6):691–693PubMedCrossRefGoogle Scholar
  113. 113.
    Chatterjie N et al (1998) Dextro-naloxone counteracts amphetamine-induced hyperactivity. Pharmacol Biochem Behav 59(2):271–274PubMedCrossRefGoogle Scholar
  114. 114.
    Rossignol DP et al (2004) Safety, pharmacokinetics, pharmacodynamics, and plasma lipoprotein distribution of eritoran (E5564) during continuous intravenous infusion into healthy volunteers. Antimicrob Agents Chemother 48(9):3233–3240PubMedCrossRefGoogle Scholar
  115. 115.
    Tidswell M et al (2010) Phase 2 trial of eritoran tetrasodium (E5564), a toll-like receptor 4 antagonist, in patients with severe sepsis. Crit Care Med 38(1):72–83PubMedCrossRefGoogle Scholar
  116. 116.
    Bennett-Guerrero E et al (2007) A phase II, double-blind, placebo-controlled, ascending-dose study of Eritoran (E5564), a lipid A antagonist, in patients undergoing cardiac surgery with cardiopulmonary bypass. Anesth Analg 104(2):378–383PubMedCrossRefGoogle Scholar
  117. 117.
    Yamada M et al (2006) Optically active cyclohexene derivative as a new antisepsis agent: an efficient synthesis of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242). Chem Pharm Bull (Tokyo) 54(1):58–62CrossRefGoogle Scholar
  118. 118.
    Takashima K et al (2009) Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br J Pharmacol 157(7):1250–1262PubMedCrossRefGoogle Scholar
  119. 119.
    Matsunaga N et al (2011) TAK-242 (resatorvid), a small-molecule inhibitor of toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol 79(1):34–41PubMedCrossRefGoogle Scholar
  120. 120.
    Sha T et al (2007) Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model. Eur J Pharmacol 571(2–3):231–239PubMedCrossRefGoogle Scholar
  121. 121.
    Rice TW et al (2010) A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit Care Med 38(8):1685–1694PubMedCrossRefGoogle Scholar
  122. 122.
    Li Y et al (2010) Toll-like receptor 2 is required for opioids-induced neuronal apoptosis. Biochem Biophys Res Commun 391(1):426–430PubMedCrossRefGoogle Scholar
  123. 123.
    Shavit Y et al (2005) Interleukin-1 antagonizes morphine analgesia and underlies morphine tolerance. Pain 115(1–2):50–59PubMedCrossRefGoogle Scholar
  124. 124.
    Granowitz EV et al (1992) Pharmacokinetics, safety and immunomodulatory effects of human recombinant interleukin-1 receptor antagonist in healthy humans. Cytokine 4(5):353–360PubMedCrossRefGoogle Scholar
  125. 125.
    Gabay C, Lamacchia C, Palmer G (2010) IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 6(4):232–241PubMedCrossRefGoogle Scholar
  126. 126.
    Cohen S et al (2002) Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin-1 receptor antagonist, in combination with methotrexate: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 46(3):614–624PubMedCrossRefGoogle Scholar
  127. 127.
    Goldbach-Mansky R et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 355(6):581–592PubMedCrossRefGoogle Scholar
  128. 128.
    Miller AM et al (2011) Molecular mechanisms of alcoholic liver disease: innate immunity and cytokines. Alcohol Clin Exp Res 35(5):787–793PubMedCrossRefGoogle Scholar
  129. 129.
    Taslim N, Soderstrom K, Dar MS (2011) Role of mouse cerebellar nicotinic acetylcholine receptor (nAChR) alpha(4)beta(2)- and alpha(7) subtypes in the behavioral cross-tolerance between nicotine and ethanol-induced ataxia. Behav Brain Res 217(2):282–292PubMedCrossRefGoogle Scholar
  130. 130.
    Hickman M et al (2008) Does alcohol increase the risk of overdose death: the need for a translational approach. Addiction 103(7):1060–1062PubMedCrossRefGoogle Scholar
  131. 131.
    Levine B, Green D, Smialek JE (1995) The role of ethanol in heroin deaths. J Forensic Sci 40(5):808–810PubMedGoogle Scholar
  132. 132.
    Szabo G, Bala S (2010) Alcoholic liver disease and the gut-liver axis. World J Gastroenterol 16(11):1321–1329PubMedCrossRefGoogle Scholar
  133. 133.
    Crews FT, Zou J, Qin L (2011) Induction of innate immune genes in brain create the neurobiology of addiction. Brain Behav Immun 25(Suppl 1):S4–S12PubMedCrossRefGoogle Scholar
  134. 134.
    Rallabhandi P et al (2006) Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling. J Immunol 177(1):322–332PubMedGoogle Scholar
  135. 135.
    Arbour NC et al (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25(2):187–191PubMedCrossRefGoogle Scholar
  136. 136.
    Kooloos WM et al (2010) Functional polymorphisms and methotrexate treatment outcome in recent-onset rheumatoid arthritis. Pharmacogenomics 11(2):163–175PubMedCrossRefGoogle Scholar
  137. 137.
    Kaminska B, Gaweda-Walerych K, Zawadzka M (2004) Molecular mechanisms of neuroprotective action of immunosuppressants–facts and hypotheses. J Cell Mol Med 8(1):45–58PubMedCrossRefGoogle Scholar
  138. 138.
    McCallum S, Masterton G (2006) Liver transplantation for alcoholic liver disease: a systematic review of psychosocial selection criteria. Alcohol Alcohol 41(4):358–363PubMedGoogle Scholar
  139. 139.
    Dew MA et al (2008) Meta-analysis of risk for relapse to substance use after transplantation of the liver or other solid organs. Liver Transpl 14(2):159–172PubMedCrossRefGoogle Scholar
  140. 140.
    Bouza C et al (2004) Efficacy and safety of naltrexone and acamprosate in the treatment of alcohol dependence: a systematic review. Addiction 99(7):811–828PubMedCrossRefGoogle Scholar
  141. 141.
    Persidsky Y et al (2011) HIV-1 infection and alcohol abuse: neurocognitive impairment, mechanisms of neurodegeneration and therapeutic interventions. Brain Behav Immun 25(Suppl 1):S61–S70PubMedCrossRefGoogle Scholar
  142. 142.
    Frank MG, Watkins LR, Maier SF (2011) Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse. Brain Behav Immun 25(Suppl 1):S21–S28PubMedCrossRefGoogle Scholar
  143. 143.
    Lampron A, Gosselin D, Rivest S (2011) Targeting the hematopoietic system for the treatment of Alzheimer’s disease. Brain Behav Immun 25(Suppl 1):S71–S79PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Discipline of Pharmacology, School of Medical SciencesUniversity of AdelaideAdelaideAustralia
  2. 2.Discipline of Physiology, School of Medical SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations